xrtzx said:
hello guys, i need some help with the following questions. All these are from the cambridge book
1) diagnostic test 5 question 18
18. If I<sub>n</sub> = [1-->e] ∫ (lnx)<sup>n</sup>dx, show that I<sub>n</sub> = e - I<sub>n-1</sub>
I<sub>n</sub> = ∫ (lnx)<sup>n</sup>dx = ∫ 1.(lnx)<sup>n</sup>dx so use integration by parts where:
∫u'v = uv - ∫uv'
u' = 1 -------> u = x
v = (lnx)<sup>n</sup>= y<sup>n</sup> (where y = lnx)
dv/dx = dv/dy.dy/dx = n.y<sup>n-1</sup>.1/x
hence v' = n/x.(lnx)<sup>n-1</sup>
I<sub>n</sub>= [x(lnx)<sup>n</sup>]{between 1 and e} - ∫ x.n/x.(lnx)<sup>n-1</sup>
= e - n∫(lnx)<sup>n-1</sup> (The e is there because ln1 = 0, lne = 1 so the first bracket just becomes 'e')
I<sub>n</sub>= e - nI<sub>n-1</sub>
To find I<sub>4</sub> then just use the reccurance trick. (EDIT: may as well finish it)
I<sub>4</sub> = e - 4I<sub>3</sub>
= e - 4(e - 3I<sub>2</sub>)
=-3e + 12(e - 2I<sub>1</sub>)
= 9e - 24I<sub>1</sub> [I<sub>0</sub> is just ∫1dx between 1 and e which equals (e -1)]
= 9e - 24(e -(e-1))
= 9e -24