'le conical sections' (1 Viewer)

dawso

needmorecustomstatusspace
Joined
Feb 25, 2004
Messages
1,029
Gender
Male
HSC
2005
p(acos@, bsin@) and Q(acos(-@), bsin(-@)) are the extremities of the latus rectum x=ae of the ellipse (insert standard ellipse equation here...)

show that PQ has length 2b^2/a

i can kinda work it out, but basically cause i know the result, anyone got a good proof?
 

KFunk

Psychic refugee
Joined
Sep 19, 2004
Messages
3,323
Location
Sydney
Gender
Male
HSC
2005
x<sup>2</sup>/a<sup>2</sup> + y<sup>2</sup>/b<sup>2</sup> = 1 , x=ae
e<sup>2</sup> + y<sup>2</sup>/b<sup>2</sup> = 1
y = &plusmn;&radic;(b<sup>2</sup>(1 - e<sup>2</sup>))
=&plusmn;b&radic;(1 - e<sup>2</sup>)
P and Q lie on a vertical line hence the distance between them is |y<sub>p</sub> - y<sub>q</sub>|

|PQ| = 2b&radic;(1 - e<sup>2</sup>) remember that b<sup>2</sup> = a<sup>2</sup>(1 - e<sup>2</sup>) hence (1 - e<sup>2</sup>) = b<sup>2</sup>/a<sup>2</sup>

|PQ| = 2b&radic;(b<sup>2</sup>/a<sup>2</sup>) = 2b<sup>2</sup>/a
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top