leehuan
Well-Known Member
- Joined
- May 31, 2014
- Messages
- 5,768
- Gender
- Male
- HSC
- 2015
Can someone check my working? I lost motivation to do it (because I'm timing myself doing a past paper) and now I can't force the final answer out, but just incase anything happened I want to know if what I had done was correct.
![](https://latex.codecogs.com/png.latex?\bg_white \\$Question: Let $ABCD $ be a quadrilateral in which $AD\parallel BC$. Let $M$ be the midpoint of $AB$ and $N$ be the midpoint of $CD$. Use vector methods to prove that $MN$ is parallel to $AD$ and that the length of $MN$ is the average of the lengths of $AD$ and $BC)
Need checked: Proof of parallel
Need help: Proving the length part.
![](https://latex.codecogs.com/png.latex?\bg_white \\$Method: Construct the trapezium $ABCD$ where $AD\parallel BC$ as given, and mark $M$ and $N. \\ $Define the following vectors as such:$\\ \begin{align*} \overrightarrow{AD}&=\bf{a}\\\overrightarrow{DC}&=\bf{d}\\\overrightarrow{CB}&=\bf{c}\\\overrightarrow{BA}&=\bf{b}\end{align*})
![](https://latex.codecogs.com/png.latex?\bg_white \\$Since we know that $AD\parallel BC$, we also have $\textbf{c}=\alpha\textbf{a}, \, \alpha \in \mathbb R)
![](https://latex.codecogs.com/png.latex?\bg_white \\$Then, $\overrightarrow{MA}=\frac{1}{2}\textbf{a}= \overrightarrow{BM} \\$ and, $\overrightarrow{DN}=\frac{1}{2}\textbf{d}= \overrightarrow{NC})
![](https://latex.codecogs.com/png.latex?\bg_white \\\overrightarrow{AN}= \overrightarrow{AD} + \overrightarrow{DN} \Rightarrow \overrightarrow{AN} = \textbf{a} + \frac{1}{2} \textbf{d}\\\therefore \overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN} \Rightarrow \overrightarrow{MN} = \frac{3}{2}\textbf{a}+\frac{1}{2}\textbf{d}\\$Similarly, by using $BN,\,BC,\,CN\\\overrightarrow{MN}=-\frac{1}{2}\textbf{a}-\textbf{c}-\frac{1}{2}\textbf{d})
![](https://latex.codecogs.com/png.latex?\bg_white $Equating:$\\ \frac{3}{2} \textbf{a}+\frac{1}{2}\textbf{d}=-\frac{1}{2}\textbf{a}-\textbf{c}-\frac{1}{2}\textbf{d}\\\Leftrightarrow \frac{1}{2}\textbf{d} = -\textbf{a} - \frac{1}{2}\textbf{c})
![](https://latex.codecogs.com/png.latex?\bg_white \therefore \overrightarrow{MN}=\frac{3}{2}\textbf{a}+\left(-\textbf{a} - \frac{1}{2}\textbf{c}\right)\\ \Leftrightarrow = \left(1-\alpha\right) \textbf{a})
![](https://latex.codecogs.com/png.latex?\bg_white \text{Hence as the vector MN is a scalar product of that for AD, they must be parallel})
Wow that LaTeX took forever to type only to look so ugly
Need checked: Proof of parallel
Need help: Proving the length part.
Wow that LaTeX took forever to type only to look so ugly