kadlil said:
81(32n) - 22n is divisible by 5, where n is a natural number
Skipping past that n= 1 stuff... Let S<sub>n</sub> be the proposition that 81(3
2n) - 2
2n is divisible by 5 i.e. that
81(3
2n) - 2
2n = 5M (where M is an integer)
Assume true for n = k
81(3
2k) - 2
2k = 5Q (multiply through by [4][9])
4.81(3<sup>2k+2</sup>) - 9.(2<sup>2k+2</sup>) = 5(36Q)
81(3<sup>2k+2</sup>) - (2<sup>2k+2</sup>) = 5(36Q) - (243.3<sup>2k+2</sup> - 8.2<sup>2k+2</sup>)
RHS = 5(36Q) - (2187.3<sup>2k</sup> - 32.2<sup>2k</sup>)
= 5(36Q) - 27(81.3<sup>2k</sup> - 2<sup>2k</sup>) + 5.2<sup>2k</sup>
= 5(36Q) - 5(27Q) + 5(2<sup>2k</sup>)
= 5R , where R is an integer.
hence 81(3<sup>2k+2</sup>) - (2<sup>2k+2</sup>) = 5R
∴ S<sub>k</sub> ==> S<sub>k+1</sub> etc...