serge said:
hey people this question has been getting on my nerves
prove by induction
sinq + sin3q + sin5q+...+sin(2n-1)q= [(1-cos2nq) / 2sinq]
using the already proven identity that
[cosy-cos(y+2q)] / 2sinq= sin(y+q)
Using [cosy-cos(y+2q)] / 2sinq= sin(y+q) you get the identity:
[cosy-cos(y+2q)] = 2sinqsin(y+q)
You assume true for k so:
sinq + sin3q + sin5q+...+sin(2k-1)q= [(1-cos2kq) / 2sinq] then you add sin(2k+1)q to both sides...
LHS = sinq + sin3q + sin5q+...+sin(2k-1)q + sin(2k+1)q
RHS = (1-cos2kq)/2sinq + sin(2k +1)q
= [2sinqsin(2k+1)q +1 - cos2kq]/2sinq
Looking at the identity you know that 2sinqsin(2kq+q) = cos2kq - cos(2kq + 2q) so,
RHS = [cos2kq - cos(2kq + 2q) + 1 - cos2kq]/2sinq
= [1 - cos2(k+1)q]/2sinq
Hence S<sub>k</sub> ==> S<sub>k+1</sub>