a) Let point vertically below O be Z which hits BA
OA=20cm (radius)
(1/2)AB=ZA (radius bisects chord at 90 degrees, <OZA=90 p degrees)<>
sin(<ZOA)=10 <ZOA="pi/6</p" therefore 20="1/2">
Since Triangle OZA congruent to triangle OBZ (SAS)
<BOZ=<ZOA=PI p congruent of angle (corresp. 6 triangle)<>
therefore <AOB=PI p 3<>
[I'm sure theres a much easier way lol]
b) Let point vertically below O be Y which hits PQ
So
Triangles POY and QOY are congruent (SAS)
Therefore PY=YQ ( corresp. sides of congruent triangles)
Therefore sin<YOQ=PY p 20<>
PY=20sin@ therefore PQ=2 (20sin@)= 40sin@ #
c) ZO-YO= Perp distance between chords
400=100+(OZ)^2 [Pythagoras]
OZ=rt(300)=10rt(3) (*)
YQ=20sin@
400=(20sin@)^2+(OY)^2
400(1-sin^2@)=(OY)^2
400cos^2@=(OY)^2
OY=20cos@
Thefore ZY=10rt(3)-20cos(@)
=10(rt3-2cos@)
I'm still going just posting this for people to try