Mechanics question (1 Viewer)

Joined
Apr 30, 2020
Messages
15
Gender
Male
HSC
N/A
Hello this is my first post here :) I am having trouble with part e and f of this question. help me pls haha

A rocket is fired vertically from the ground with an initial velocity of 60ms^-1. It is subject to a force that gives it a constant acceleration of -10ms^-2. After t seconds it is x m above the ground with velocity v ms^-1

a. express v^2 in terms of x
b. express v in terms of t
c. what is the greatest height reached by the rocket?
d. when does it reach this height?
e. where is the rocket 3 seconds after being fired?
f. when is the rocket 105m above the ground?
 

Pedro123

Member
Joined
Jun 17, 2019
Messages
90
Gender
Male
HSC
2021
Firstly, work backwards from the acceleration. Integrate the acceleration then sub in Time = 0, velocity = 60 to find the specific solution. Integrate again, and find specific solution with Time = t, Displacement = x to find the formula for displacement. This should be a quadratic. After this, sub Time = 3 into it to solve for the displacement of the rocket, and solve the quadratic normally for the last question.

Explanation is kind of bad, so pls respond if you are confused
 

idkkdi

Active Member
Joined
Aug 2, 2019
Messages
258
Gender
Male
HSC
2021
Hello this is my first post here :) I am having trouble with part e and f of this question. help me pls haha

A rocket is fired vertically from the ground with an initial velocity of 60ms^-1. It is subject to a force that gives it a constant acceleration of -10ms^-2. After t seconds it is x m above the ground with velocity v ms^-1

a. express v^2 in terms of x
b. express v in terms of t
c. what is the greatest height reached by the rocket?
d. when does it reach this height?
e. where is the rocket 3 seconds after being fired?
f. when is the rocket 105m above the ground?
s=ut+1/2 a t^2

Braindead plug and chug.

Edit:
Ah, didn't see the 4U maths title.
 
Last edited:

Zacharia Villegas

New Member
Joined
Nov 18, 2019
Messages
22
Gender
Male
HSC
2019
s=ut+1/2 a t^2

Braindead plug and chug.
I'm assuming this question is for Maths, in which case you can't just use a formula without proving it because it is not given on the formula sheet. You may use the formula as a way to check your answer in maths but not as a form of working out.
 

ultra908

Active Member
Joined
May 11, 2019
Messages
124
Gender
Male
HSC
2020
using your equation in (b), integrate to find x in terms of t. then for (e) and (f) just plug in and solve
 

CM_Tutor

Well-Known Member
Joined
Mar 11, 2004
Messages
1,385
Hello this is my first post here :) I am having trouble with part e and f of this question. help me pls haha

A rocket is fired vertically from the ground with an initial velocity of 60ms^-1. It is subject to a force that gives it a constant acceleration of -10ms^-2. After t seconds it is x m above the ground with velocity v ms^-1

a. express v^2 in terms of x
b. express v in terms of t
c. what is the greatest height reached by the rocket?
d. when does it reach this height?
e. where is the rocket 3 seconds after being fired?
f. when is the rocket 105m above the ground?




(c) Greatest height reached occurs when which occurs at from part (a), so 180 m above the ground

(d) Greatest height reached occurs when which occurs at from part (b), so after 6 s.


So, after 3 s, the rocket is 135 m above the ground and still gaining height at a speed of 30 m/s.

(f) A height of 105 m above the ground will occur twice, once as the rocket ascends and one as it descends. These can be found as follows:



So, the rocket reaches a height of 105 m after seconds, continues to rise to a maximum height of 180 m after 6 seconds, and passes the height of 105 m a second time on its descent at seconds after launch.
 
Last edited:

blyatman

Well-Known Member
Joined
Oct 11, 2018
Messages
478
Location
Austin, Texas, USA
Gender
Undisclosed
HSC
N/A
I've always wondered, do any schools teach the method where we don't have to manually calculate the constant C separately? By doing a definite integral, it saves a line or 2 of separately calculating C:





I know I shouldn't be using the same integrating variable as my limit, but just doing it here to prevent confusion.
 

idkkdi

Active Member
Joined
Aug 2, 2019
Messages
258
Gender
Male
HSC
2021
I've always wondered, do any schools teach the method where we don't have to manually calculate the constant C separately? By doing a definite integral, it saves a line or 2 of separately calculating C:





I know I shouldn't be using the same integrating variable as my limit, but just doing it here to prevent confusion.
I wonder if any schools teach you to solve constant acceleration questions in 4U math in the simplest way; plug and chug kinematics algebra. Variable acceleration, instantaneous acceleration sure. But, why do you do this for constant acceleration.
 

CM_Tutor

Well-Known Member
Joined
Mar 11, 2004
Messages
1,385
I've always wondered, do any schools teach the method where we don't have to manually calculate the constant C separately? By doing a definite integral, it saves a line or 2 of separately calculating C:





I know I shouldn't be using the same integrating variable as my limit, but just doing it here to prevent confusion.
Blyatman, I know of no reason that would make this unacceptable under the syllabus, though it is not regularly used. A more common use of definite integration might be to say, for part (e), the height after 3 seconds, that:


This would allow part (f) to be solved by looking at:


I wonder if any schools teach you to solve constant acceleration questions in 4U math in the simplest way; plug and chug kinematics algebra. Variable acceleration, instantaneous acceleration sure. But, why do you do this for constant acceleration.
Only solutions that start from acceleration = -10 and use calculus are permitted.
 

fan96

617 pages
Joined
May 25, 2017
Messages
521
Location
NSW
Gender
Male
HSC
2018
Uni Grad
2024
I wonder if any schools teach you to solve constant acceleration questions in 4U math in the simplest way; plug and chug kinematics algebra. Variable acceleration, instantaneous acceleration sure. But, why do you do this for constant acceleration.
Actually, the simplest way is to just get the answer from the back of the textbook, ask someone else who knows how to do it, or to search it up online.
And this is what we would do if we only cared about the number we get at the end.

So what is the point of even learning calculus and mathematics when we can just look it up online...?
It's to develop your skills and gain an understanding of how to solve these sorts of problems so you can adapt your logic to different ones.
 

Trebla

Administrator
Administrator
Joined
Feb 16, 2005
Messages
6,669
Gender
Male
HSC
2006
I've always wondered, do any schools teach the method where we don't have to manually calculate the constant C separately? By doing a definite integral, it saves a line or 2 of separately calculating C:





I know I shouldn't be using the same integrating variable as my limit, but just doing it here to prevent confusion.
Whilst it gets the job done, I think it’s not as commonly taught (at least from the old syllabus) to avoid confusion in having to explain the difference between constants and variables in the limit of the integral.

Even those who do teach it often use sloppy notation like

and avoid explaining it altogether.

If you tried to correct it to proper notation like

then a student could wonder why V is now our new velocity variable which we can claim to be dx/dt (as opposed to a constant v=V) after we just already integrated across our velocity variable v.

Similarly, if the v remained as the velocity variable, then the notation should be like

then a student could ask why the velocity variable we are integrating magically changed from v to V with a variable in the limit of integration.

It’s not the easiest thing to explain to a student, whereas solving for the constant of integration approach is quite intuitive and doesn’t run into this notation confusion.

That being said, the new syllabus seems to be getting students to understand the above concept properly (through fundamental theorem of calculus when integration is introduced), whereas this was not as explicit in the old syllabus. So unless old habits remain, it is possible teachers may be more comfortable teaching definite integrals with variables in the limits.
 

CM_Tutor

Well-Known Member
Joined
Mar 11, 2004
Messages
1,385
Similarly, if the v remained as the velocity variable, then the notation should be like

then a student could ask why the velocity variable we are integrating magically changed from v to V with a variable in the limit of integration.

It’s not the easiest thing to explain to a student, whereas solving for the constant of integration approach is quite intuitive and doesn’t run into this notation confusion.

That being said, the new syllabus seems to be getting students to understand the above concept properly (through fundamental theorem of calculus when integration is introduced), whereas this was not as explicit in the old syllabus. So unless old habits remain, it is possible teachers may be more comfortable teaching definite integrals with variables in the limits.
This approach is understandable as an example of the phenomenon of dummy variables, which was a useful concept to understand under the old syllabus and remains useful under the new syllabus.
 

Velocifire

Well-Known Member
Joined
Sep 7, 2019
Messages
310
Location
𝓒𝓻𝓲𝓷𝓰𝓮 𝓒𝓲𝓽𝔂
Gender
Male
HSC
2021
Wow. This escalated quickly from just using physics formulas from Pedro and Idk to calculus. I was really thinking "Is that all there is to it until I saw the 4 unit caption and then I was like oh shit there's more to it".
 
Joined
Apr 30, 2020
Messages
15
Gender
Male
HSC
N/A
Hello everyone, thanks for taking the time to answer my question! According to the answers to this question, the answer to part e should be 179.8m and part f should be t = 2s, 10s. So I'm wondering if the answers are wrong? I completely agree with the working you guys have here.
 

Pedro123

Member
Joined
Jun 17, 2019
Messages
90
Gender
Male
HSC
2021
Hello everyone, thanks for taking the time to answer my question! According to the answers to this question, the answer to part e should be 179.8m and part f should be t = 2s, 10s. So I'm wondering if the answers are wrong? I completely agree with the working you guys have here.
Huh. I have no idea.
Just on a most basic physics level, I have no idea how they got that answer. This should be extremely simple - a projectile launched directly up then experiences gravitational acceleration. Just by s = ut + (at^2)/2 (Which should apply in this situation in calculating the height after 3 seconds) s = 60*3 -(10*3^2)/2
= 180 - 45 = 135m.
I see no reason why it shouldn't be this. The only thing I can think of is the answers are wrong, but I also fail to see the ways this is a 4 unit question - seems like a really simple 3 unit projectile motion question. Even that statement - after t seconds it has a displacement of x and velocity v - that adds literally no information to the question, and only acts for some funny algebra.

I may be just completely wrong here (And feel free to call me out if I am completely wrong, I don't have much of an understanding of the 4u course), but I think the answers are wrong at this isn't really 4 unit.
 
Last edited:
Joined
Apr 30, 2020
Messages
15
Gender
Male
HSC
N/A
Huh. I have no idea.
Just on a most basic physics level, I have no idea how they got that answer. This should be extremely simple - a projectile launched directly up then experiences gravitational acceleration. Just by s = ut + (at^2)/2 (Which should apply in this situation in calculating the height after 3 seconds) s = 60*3 -(10*3^2)/2
= 180 - 45 = 135m.
I see no reason why it shouldn't be this. The only thing I can think of is the answers are wrong, but I also fail to see the ways this is a 4 unit question - seems like a really simple 3 unit projectile motion question. Even that statement - after t seconds it has a displacement of x and velocity v - that adds literally no information to the question, and only acts for some funny algebra.

I may be just completely wrong here (And feel free to call me out if I am completely wrong, I don't have much of an understanding of the 4u course), but I think the answers are wrong at this isn't really 4 unit.
I completely agree with you, I also do physics and the question just doesn't make sense. This was taken from my math in focus ext 2 book, if you are saying this is 3 unit stuff would you recommend using the Cambridge ext 2 book instead?
 

CM_Tutor

Well-Known Member
Joined
Mar 11, 2004
Messages
1,385
Hello everyone, thanks for taking the time to answer my question! According to the answers to this question, the answer to part e should be 179.8m and part f should be t = 2s, 10s. So I'm wondering if the answers are wrong? I completely agree with the working you guys have here.
Do the answers agree or parts (a) to (d)? If so, we are in agreement that the maximum height of 180 m occurs after t = 6 s.
It follows that the height at t = 3 s needs to be well under 179.8 m in height because a rocket travelling 179.8 m in 3 s to get within 20 cm of its maximum height, then taking another 3 s to cover those last 20 cm, is just not reasonable. Mathematically, it would require x as a function of t to be a parabola (which it is) and yet for that parabola to be steep for t = 0 to t = 3, then nearly flat for t = 3 to t = 6.
We can confirm the parabola as we know as and , and these combine to .
This equation confirms the launch at t = 0 occurs from x = 0, that at t = 3, x = 135, that at , and that at t = 12, x = 0 and the rocket has returned to its launch point.

t = 2 s and 10 s corresponds to a height of 100 m rather than 105 m because:
at and
at .
The m times are seconds and seconds... near but not the same as the answers given.
 
Joined
Apr 30, 2020
Messages
15
Gender
Male
HSC
N/A
Do the answers agree or parts (a) to (d)? If so, we are in agreement that the maximum height of 180 m occurs after t = 6 s.
It follows that the height at t = 3 s needs to be well under 179.8 m in height because a rocket travelling 179.8 m in 3 s to get within 20 cm of its maximum height, then taking another 3 s to cover those last 20 cm, is just not reasonable. Mathematically, it would require x as a function of t to be a parabola (which it is) and yet for that parabola to be steep for t = 0 to t = 3, then nearly flat for t = 3 to t = 6.
We can confirm the parabola as we know as and , and these combine to .
This equation confirms the launch at t = 0 occurs from x = 0, that at t = 3, x = 135, that at , and that at t = 12, x = 0 and the rocket has returned to its launch point.

t = 2 s and 10 s corresponds to a height of 100 m rather than 105 m because:
at and
at .
The m times are seconds and seconds... near but not the same as the answers given.
Yep, we are correct for parts a to d! I think the book is wrong, I don't know where they got those answers from. I thought i was missing something from my working and went over it again and again when i couldn't get the answers at the back of the book its relieving that other people are also not getting the answers at the back of the book haha.
 

CM_Tutor

Well-Known Member
Joined
Mar 11, 2004
Messages
1,385
Yep, we are correct for parts a to d! I think the book is wrong, I don't know where they got those answers from. I thought i was missing something from my working and went over it again and again when i couldn't get the answers at the back of the book its relieving that other people are also not getting the answers at the back of the book haha.
I can buy that part (f) is meant to be 100 m, in which case the answers are 2 s and 10 s. (e) is just weird, though. :)
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top