_Anonymous
Member
- Joined
- Jun 30, 2017
- Messages
- 131
- Gender
- Male
- HSC
- 2019
1) Say there are two cars; one with a force of 400N and the other one at 800N. Their masses are the same, therefore they have different acceleration. If they were to collide head on and the drivers weren't wearing seatbelts, would the driver from Car A (400N) fly backwards with the car or would it fly through the windshield? I think it's the latter. And if so, would they travel at the same velocity as the car before impact or would they travel at a much slower speed?
The reason I ask that is because Newton's First Law states that "an object will remain at rest or travel at constant velocity unless acted upon by an unbalanced external force". Now the unbalanced external force in this case is the 700N force of the other car colliding, so would the person inside still travel at the constant velocity of the car when hit?
In the same scenario, would the driver of the 700N force car still fly forwards? Or would the driver just remain in the car?
There's also another question I have:
2) Explain why higher velocities require greater force to stop. For example, say you fall from a 10 storey floor onto a trampoline, the trampoline would require more force to stop you (therefore, you're most likely to rip through the trampoline), but if you jumped from 4metres up onto a trampoline, you'd be fine.
How does this work since F =Ma and gravitational acceleration and mass is constant?
The reason I ask that is because Newton's First Law states that "an object will remain at rest or travel at constant velocity unless acted upon by an unbalanced external force". Now the unbalanced external force in this case is the 700N force of the other car colliding, so would the person inside still travel at the constant velocity of the car when hit?
In the same scenario, would the driver of the 700N force car still fly forwards? Or would the driver just remain in the car?
There's also another question I have:
2) Explain why higher velocities require greater force to stop. For example, say you fall from a 10 storey floor onto a trampoline, the trampoline would require more force to stop you (therefore, you're most likely to rip through the trampoline), but if you jumped from 4metres up onto a trampoline, you'd be fine.
How does this work since F =Ma and gravitational acceleration and mass is constant?