a^2(b+c)+b^2(c+a)+c^2(a+b) + kabc
=(a+b)(ab + c^2) + a^2c + b^2 c + kabc
=(a+b)(ab+c^2) + c(a^2 + b^2 + kab)
once we get to this point, we see that if k=2, then that last term becomes a perfect square, so
(a+b)(ab+c^2) + c(a^2 + b^2 + kab) = (a+b)(ab+c^2) + c(a+b)^2
= (a+b)(ab+c^2 + c(a+b))
=(a+b)[c(a+c) + b(a+c)]
=(a+b)(a+c)(c+b)
It's a symmetric polynomial!!
=(a+b)(ab + c^2) + a^2c + b^2 c + kabc
=(a+b)(ab+c^2) + c(a^2 + b^2 + kab)
once we get to this point, we see that if k=2, then that last term becomes a perfect square, so
(a+b)(ab+c^2) + c(a^2 + b^2 + kab) = (a+b)(ab+c^2) + c(a+b)^2
= (a+b)(ab+c^2 + c(a+b))
=(a+b)[c(a+c) + b(a+c)]
=(a+b)(a+c)(c+b)
It's a symmetric polynomial!!
Last edited: