First, Test for x=0. The function does not have a root at x=0
<a href="http://www.codecogs.com/eqnedit.php?latex=P(x)=\sum_{k=0}^{2n}\frac{x^{k}}{k!}\\\\ P'(x)=\sum_{k=0}^{2n-1}\frac{x^{k}}{k!}\\\\ P''(x)=\sum_{k=0}^{2n-2}\frac{x^{k}}{k!}\\\\ the~function~has~a~minimum~stationary~point~at ~\alpha \\\\ hence,~P'(\alpha )=0.\\\\ at~this~point,~P(\alpha )-P'(\alpha )=P(\alpha )=\frac{\alpha ^{2n}}{(2n)!}~which~is~positive.\\\\ hence,~as~the~function~is~of~an~even~degree,~P(x)~tends~towards~@plus;\infty ~for~x->\pm \infty \\\\ hence,~as~all~minimum~stationary~points~are~>0~the~function~has~no~real~roots." target="_blank"><img src="http://latex.codecogs.com/gif.latex?P(x)=\sum_{k=0}^{2n}\frac{x^{k}}{k!}\\\\ P'(x)=\sum_{k=0}^{2n-1}\frac{x^{k}}{k!}\\\\ P''(x)=\sum_{k=0}^{2n-2}\frac{x^{k}}{k!}\\\\ the~function~has~a~minimum~stationary~point~at ~\alpha \\\\ hence,~P'(\alpha )=0.\\\\ at~this~point,~P(\alpha )-P'(\alpha )=P(\alpha )=\frac{\alpha ^{2n}}{(2n)!}~which~is~positive.\\\\ hence,~as~the~function~is~of~an~even~degree,~P(x)~tends~towards~+\infty ~for~x->\pm \infty \\\\ hence,~as~all~minimum~stationary~points~are~>0~the~function~has~no~real~roots." title="P(x)=\sum_{k=0}^{2n}\frac{x^{k}}{k!}\\\\ P'(x)=\sum_{k=0}^{2n-1}\frac{x^{k}}{k!}\\\\ P''(x)=\sum_{k=0}^{2n-2}\frac{x^{k}}{k!}\\\\ the~function~has~a~minimum~stationary~point~at ~\alpha \\\\ hence,~P'(\alpha )=0.\\\\ at~this~point,~P(\alpha )-P'(\alpha )=P(\alpha )=\frac{\alpha ^{2n}}{(2n)!}~which~is~positive.\\\\ hence,~as~the~function~is~of~an~even~degree,~P(x)~tends~towards~+\infty ~for~x->\pm \infty \\\\ hence,~as~all~minimum~stationary~points~are~>0~the~function~has~no~real~roots." /></a>
im not sure whether my justification is perfect...