1a) show that x^n-bx^2+c has a multiple root if (n^n)(c^n-2)=(4b^n)((n-2)^(n-2))
b)Show co4@=8(cos@-cosPI/8)(cos@-cos3PI/8)(cos@-cos5PI/8)(cos@-cos7PI/8)
f(x)=x^n-bx^2+c
f'(x)=nx
n-1-2bx
=x(nx
n-2-2b)
=0 when nx
n-2-2b=0 x=/=0
x
n-2=2b/n
x=(2b/n)
1/(n-2) (that is the condition for multiple root)
sub it back into f(x).
f((2b/n)
1/(n-2))=(2b/n)
n/(n-2)-b(2b/n)
2/(n-2)+c
=(2b/n)
2/(n-2)((2b/n)-b)+c=0
(2b/n)(2b/n-b)
n-2=-c
n-2
probably did something wrong
b)Show co4@=8(cos@-cosPI/8)(cos@-cos3PI/8)(cos@-cos5PI/8)(cos@-cos7PI/8)
RHS=8(cos@-cos pi/8)(cos@+cos pi/8)(cos@-3pi/8)(cos@+3pi/8)
=8(cos^2 @-cos^2 pi/8)(cos^2 @-cos^2 3pi/8)
=8(cos^4 @-cos^2 @cos^2 3pi/8-cos^2 pi/8 cos^2 @ + cos^2 pi/8 cos^2 3pi/8)
=8cos^4 @-8cos^2 @(cos^2 3pi/8+cos^2 pi/8)+8cos^2 pi/8 cos^2 3pi/8
=8cos^4 @- 8cos^2 @+8(0.5(cos pi/2+cos pi/4))
2
=8cos^4 @ +8cos^2 @ + 1
LHS=cos 4@=2cos^2 2@-1
=2(2cos^2 @-1)^2 -1
=2(4cos^4 @ -4cos^2 @+1)-1
=8cos^4@-8cos^2 @+1=RHS