Here's something similar to J0n's method, but with a magic shortcut:
(a + ib)^2 = i
a^2 - b^2 + i(2ab) = i
so a^2 - b^2 = 0 AND 2ab = 1
therefore a^2 + b^2 = 2*b^2.
however a^2 + b^2 = |a + ib|^2 = |(a+ib)^2| = |i| = 1
1 = 2*b^2
b = +- 1/sqrt(2)
subbing b into the equation 2ab = 1
so a = +- 1/sqrt(2)
so the square roots of i are:
1/sqrt(2) + i/sqrt(2)
-1/sqrt(2) - i/sqrt(2)
(a + ib)^2 = i
a^2 - b^2 + i(2ab) = i
so a^2 - b^2 = 0 AND 2ab = 1
therefore a^2 + b^2 = 2*b^2.
however a^2 + b^2 = |a + ib|^2 = |(a+ib)^2| = |i| = 1
1 = 2*b^2
b = +- 1/sqrt(2)
subbing b into the equation 2ab = 1
so a = +- 1/sqrt(2)
so the square roots of i are:
1/sqrt(2) + i/sqrt(2)
-1/sqrt(2) - i/sqrt(2)