B bossleymaths Member Joined Mar 8, 2008 Messages 45 Gender Male HSC 2009 Oct 14, 2008 #1 if t=tan x/2 , show that sinx=2t / 1+t^2
tacogym27101990 Member Joined Feb 6, 2007 Messages 628 Location Terrigal Gender Male HSC 2008 Oct 14, 2008 #2 tanx= tan(x/2+x/2) =(2tanx/2)/(1-tan2x/2) =2t/1-t2 then just draw up a right angle triangle and find an expression for the hypotenuse
tanx= tan(x/2+x/2) =(2tanx/2)/(1-tan2x/2) =2t/1-t2 then just draw up a right angle triangle and find an expression for the hypotenuse
tommykins i am number -e^i*pi Joined Feb 18, 2007 Messages 5,730 Gender Male HSC 2008 Oct 14, 2008 #3 bossleymaths said: if t=tan x/2 , show that sinx=2t / 1+t^2 Click to expand... sinx = 2sinx/2.cosx/2 = [2sinx/2.cosx/2]/sin²x+cos²x = [2tanx/2]/1+tan²x/2 dividing everything by cos²x/2 = 2t/1+t²
bossleymaths said: if t=tan x/2 , show that sinx=2t / 1+t^2 Click to expand... sinx = 2sinx/2.cosx/2 = [2sinx/2.cosx/2]/sin²x+cos²x = [2tanx/2]/1+tan²x/2 dividing everything by cos²x/2 = 2t/1+t²