MedVision ad

trig substitution for integration (2 Viewers)

shsshs

Member
Joined
Mar 31, 2006
Messages
94
Gender
Male
HSC
2006
hi, my thinking has got me a little confused.

say you need to integrate

root(4 - x^2)

then i let x = 2sin[FONT='*S 明朝']θ , dx = 2cos[FONT='*S 明朝']θ d[FONT='*S 明朝']θ[/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝']but when i simplify 2 x root(1 - sin^2 [FONT='*S 明朝']θ) , how do i know whether to put cos[FONT='*S 明朝']θ or -cos[FONT='*S 明朝']θ ???[/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝']i cant figure out the domain restrictions or whatever you need to determine it. I know the answer is +cos[FONT='*S 明朝']θ i juss dont know why[/FONT][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
 

ianc

physics is phun!
Joined
Nov 7, 2005
Messages
618
Location
on the train commuting to/from UNSW...
Gender
Male
HSC
2006
no, you solve this simply using the trig identity sin<sup>2</sup>θ + cos<sup>2</sup>θ = 1, hence:
sqrt(1-
sin<sup>2</sup>θ) = sqrt(cos<sup>2</sup>θ) = cosθ

edit: I understand your question now. The original integration question was sqrt(4 - x^2), not ±sqrt(4-x^2), hence it simplifies down to a positive cosθ
 
Last edited:
P

pLuvia

Guest
Int.sqrt{4-x2}dx
x=2sinθ dx=2cosθdθ
I=int.sqrt{4-4sin2θ}(2cosθdθ)
=int.2sqrt{1-sin2θ}(2cosθdθ)
=int.2sqrt{cos2θ}(2cosθdθ)
=int.2cosθ(2cosθdθ)
=int.4cos2θdθ
=4int.1/2(1+cos2θ)dθ
=2[θ+1/2sin2θ]+C
=2θ+sin2θ+C
=2sin-1x/2+1/2(xsqrt{4-x2}+C
 
Last edited by a moderator:

A l

Member
Joined
Nov 9, 2004
Messages
625
Gender
Undisclosed
HSC
N/A
shsshs said:
hi, my thinking has got me a little confused.

say you need to integrate

root(4 - x^2)

then i let x = 2sin[FONT='JS 明朝']θ , dx = 2cos[FONT='JS 明朝']θ d[FONT='JS 明朝']θ[/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝']but when i simplify 2 x root(1 - sin^2 [FONT='JS 明朝']θ) , how do i know whether to put cos[FONT='JS 明朝']θ or -cos[FONT='JS 明朝']θ ???[/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝']i cant figure out the domain restrictions or whatever you need to determine it. I know the answer is +cos[FONT='JS 明朝']θ i juss dont know why[/FONT][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
Think about the value of cos²θ and sin²θ. Since sin θ and cos θ can only be between -1 and 1 inclusive, cos²θ and sin²θ can only be between 0 and 1 inclusive. Therefore when you have 1 - sin²θ the answer is always between 0 and 1, thus it is always positive.
 
Last edited:

_ShiFTy_

Member
Joined
Aug 7, 2005
Messages
185
Gender
Male
HSC
2006
Could you can say that 'θ' determines the sign of cosθ, so a ± is not necessary?
 
Last edited:
P

pLuvia

Guest
If you have this situation
sqrt{cos2θ}
=|cosθ|

Can this prove that it can only be positive cosθ?
 

shsshs

Member
Joined
Mar 31, 2006
Messages
94
Gender
Male
HSC
2006
but going from root(cos^2 θ) to cosθ is what troubles me

for example since you are saying root(cos^2 θ) = cosθ

if you let θ = 180

then RHS = 1
LHS = -1

thats what bugs me which i still cant explain.
 

zeek

Member
Joined
Sep 29, 2005
Messages
549
Location
ummmmm
Gender
Male
HSC
2006
well if you look at the equation:

root(cos^2@)

This is the modulus of cos @ or the right side of the equation (cos @). So in other words, you can re-write the equation to be come...

|cos@|=cos@

This is why you get LHS = 1 and RHS = -1
 

shsshs

Member
Joined
Mar 31, 2006
Messages
94
Gender
Male
HSC
2006
thankyou

so theres no case when you use the negative squareroot right?
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 2)

Top