• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

trig substitution for integration (1 Viewer)

shsshs

Member
Joined
Mar 31, 2006
Messages
94
Gender
Male
HSC
2006
hi, my thinking has got me a little confused.

say you need to integrate

root(4 - x^2)

then i let x = 2sin[FONT='*S 明朝']θ , dx = 2cos[FONT='*S 明朝']θ d[FONT='*S 明朝']θ[/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝']but when i simplify 2 x root(1 - sin^2 [FONT='*S 明朝']θ) , how do i know whether to put cos[FONT='*S 明朝']θ or -cos[FONT='*S 明朝']θ ???[/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝']i cant figure out the domain restrictions or whatever you need to determine it. I know the answer is +cos[FONT='*S 明朝']θ i juss dont know why[/FONT][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][FONT='*S 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
 

ianc

physics is phun!
Joined
Nov 7, 2005
Messages
618
Location
on the train commuting to/from UNSW...
Gender
Male
HSC
2006
no, you solve this simply using the trig identity sin<sup>2</sup>θ + cos<sup>2</sup>θ = 1, hence:
sqrt(1-
sin<sup>2</sup>θ) = sqrt(cos<sup>2</sup>θ) = cosθ

edit: I understand your question now. The original integration question was sqrt(4 - x^2), not ±sqrt(4-x^2), hence it simplifies down to a positive cosθ
 
Last edited:
P

pLuvia

Guest
Int.sqrt{4-x2}dx
x=2sinθ dx=2cosθdθ
I=int.sqrt{4-4sin2θ}(2cosθdθ)
=int.2sqrt{1-sin2θ}(2cosθdθ)
=int.2sqrt{cos2θ}(2cosθdθ)
=int.2cosθ(2cosθdθ)
=int.4cos2θdθ
=4int.1/2(1+cos2θ)dθ
=2[θ+1/2sin2θ]+C
=2θ+sin2θ+C
=2sin-1x/2+1/2(xsqrt{4-x2}+C
 
Last edited by a moderator:

A l

Member
Joined
Nov 9, 2004
Messages
625
Gender
Undisclosed
HSC
N/A
shsshs said:
hi, my thinking has got me a little confused.

say you need to integrate

root(4 - x^2)

then i let x = 2sin[FONT='JS 明朝']θ , dx = 2cos[FONT='JS 明朝']θ d[FONT='JS 明朝']θ[/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝']but when i simplify 2 x root(1 - sin^2 [FONT='JS 明朝']θ) , how do i know whether to put cos[FONT='JS 明朝']θ or -cos[FONT='JS 明朝']θ ???[/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝']i cant figure out the domain restrictions or whatever you need to determine it. I know the answer is +cos[FONT='JS 明朝']θ i juss dont know why[/FONT][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
[FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][FONT='JS 明朝'][/FONT][/FONT][/FONT][/FONT][/FONT][/FONT]
Think about the value of cos²θ and sin²θ. Since sin θ and cos θ can only be between -1 and 1 inclusive, cos²θ and sin²θ can only be between 0 and 1 inclusive. Therefore when you have 1 - sin²θ the answer is always between 0 and 1, thus it is always positive.
 
Last edited:

_ShiFTy_

Member
Joined
Aug 7, 2005
Messages
185
Gender
Male
HSC
2006
Could you can say that 'θ' determines the sign of cosθ, so a ± is not necessary?
 
Last edited:
P

pLuvia

Guest
If you have this situation
sqrt{cos2θ}
=|cosθ|

Can this prove that it can only be positive cosθ?
 

shsshs

Member
Joined
Mar 31, 2006
Messages
94
Gender
Male
HSC
2006
but going from root(cos^2 θ) to cosθ is what troubles me

for example since you are saying root(cos^2 θ) = cosθ

if you let θ = 180

then RHS = 1
LHS = -1

thats what bugs me which i still cant explain.
 

zeek

Member
Joined
Sep 29, 2005
Messages
549
Location
ummmmm
Gender
Male
HSC
2006
well if you look at the equation:

root(cos^2@)

This is the modulus of cos @ or the right side of the equation (cos @). So in other words, you can re-write the equation to be come...

|cos@|=cos@

This is why you get LHS = 1 and RHS = -1
 

shsshs

Member
Joined
Mar 31, 2006
Messages
94
Gender
Male
HSC
2006
thankyou

so theres no case when you use the negative squareroot right?
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top