need help with 2 questions:
1. By considering [maths]1+\binom{n}{1}x+\binom{n}{2}x^2+...+\binom{n}{n}x^n=(1+x)^n[/maths], show that [maths]1-\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}-...+(-1)^n\frac{1}{n+1}\binom{n}{n}=\frac{1}{n+1}[/maths]
2. Prove that [maths]1+\binom{10}{2}3^2+\binom{10}{4}3^4+\binom{10}{6}3^6+\binom{10}{8}3^8+3^{10}=2^9(2^{10}+1)[/maths]
is it just me or is the first question sorta screwd up.
1. By considering [maths]1+\binom{n}{1}x+\binom{n}{2}x^2+...+\binom{n}{n}x^n=(1+x)^n[/maths], show that [maths]1-\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}-...+(-1)^n\frac{1}{n+1}\binom{n}{n}=\frac{1}{n+1}[/maths]
2. Prove that [maths]1+\binom{10}{2}3^2+\binom{10}{4}3^4+\binom{10}{6}3^6+\binom{10}{8}3^8+3^{10}=2^9(2^{10}+1)[/maths]
is it just me or is the first question sorta screwd up.