HSC 2012 MX2 Marathon (archive) (2 Viewers)

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,467
Gender
Undisclosed
HSC
N/A
Re: 2012 HSC MX2 Marathon

Here's an interesting question I just did:

Generate a formula for the nth term of the Fibonacci series (1,1,2,3...)
Hence, find a formula for the nth term of the Lucas series (1,3,4,7...)given that
Very nice question.
 

SpiralFlex

Well-Known Member
Joined
Dec 18, 2010
Messages
6,954
Gender
Female
HSC
N/A
Re: 2012 HSC MX2 Marathon





Forming a polynomial









System of linear equations,



Since we know,





Solve and arrange.



Now you can deduce Lucas my neighbour.
 
Last edited:

bleakarcher

Active Member
Joined
Jul 8, 2011
Messages
1,503
Gender
Male
HSC
2013
Re: 2012 HSC MX2 Marathon





Forming a polynomial









System of linear equations,



Since we know,





Solve and arrange.



Now you can deduce Lucas my neighbour.
Spiral, you have used the symbol phi which represents the golden ratio. But what does the other symbol represent?
 

largarithmic

Member
Joined
Aug 9, 2011
Messages
195
Gender
Male
HSC
2011
Re: 2012 HSC MX2 Marathon

A beautiful question for those who have an idea what modular arithmetic is (basically you reduce every number to its remainder when divided by a number, e.g. 13 becomes 3 modulo 5, 17 becomes 5 modulo 6. Its easy to check that if say A reduces to A', and B reduces to B', then A+B reduces to A'+B' or perhaps whatever that reduces to):

Prove that for every positive integer, there exists a Fibonacci number which is divisible by that integer.
 

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,467
Gender
Undisclosed
HSC
N/A
Re: 2012 HSC MX2 Marathon

A beautiful question for those who have an idea what modular arithmetic is (basically you reduce every number to its remainder when divided by a number, e.g. 13 becomes 3 modulo 5, 17 becomes 5 modulo 6. Its easy to check that if say A reduces to A', and B reduces to B', then A+B reduces to A'+B' or perhaps whatever that reduces to):

Prove that for every positive integer, there exists a Fibonacci number which is divisible by that integer.
Larg, why must u post interesting questions.just as i am about to sleep? Will try.tmr.during.work.
 

kingkong123

Member
Joined
Dec 20, 2011
Messages
98
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

<a href="http://www.codecogs.com/eqnedit.php?latex=\\\textup{A relation is defined implicitly by: }x^{2}@plus;xy-2y^{2}=0.\textup{ Show that }\frac{dy}{dx}\textup{ has only two possible values: 1 and -}\frac{1}{2}. \\\textup{ Hence or otherwise, sketch the relation.}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\\textup{A relation is defined implicitly by: }x^{2}+xy-2y^{2}=0.\textup{ Show that }\frac{dy}{dx}\textup{ has only two possible values: 1 and -}\frac{1}{2}. \\\textup{ Hence or otherwise, sketch the relation.}" title="\\\textup{A relation is defined implicitly by: }x^{2}+xy-2y^{2}=0.\textup{ Show that }\frac{dy}{dx}\textup{ has only two possible values: 1 and -}\frac{1}{2}. \\\textup{ Hence or otherwise, sketch the relation.}" /></a>
 

bleakarcher

Active Member
Joined
Jul 8, 2011
Messages
1,503
Gender
Male
HSC
2013
Re: 2012 HSC MX2 Marathon





Forming a polynomial









System of linear equations,



Since we know,





Solve and arrange.



Now you can deduce Lucas my neighbour.
Spiral, where did you get the expression after you wrote system of linear equations from?
 

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,041
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

<a href="http://www.codecogs.com/eqnedit.php?latex=\\ x^2@plus;xy-2y^2=0\\ (x@plus;\frac{1}{2}y)^2-\frac{9}{4}y^2=0\\ (x@plus;2y)(x-y)=0~~~~\Rightarrow y=x$ or $y=-\frac{1}{2}x\\ ~\\ $Differentiating both functions we get$\\ \frac{dy}{dx}=1$ or $\frac{dy}{dx}=-\frac{1}{2}\\ ~\\ $Hence, the graph of the function is two straight lines intersecting at the origin$" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ x^2+xy-2y^2=0\\ (x+\frac{1}{2}y)^2-\frac{9}{4}y^2=0\\ (x+2y)(x-y)=0~~~~\Rightarrow y=x$ or $y=-\frac{1}{2}x\\ ~\\ $Differentiating both functions we get$\\ \frac{dy}{dx}=1$ or $\frac{dy}{dx}=-\frac{1}{2}\\ ~\\ $Hence, the graph of the function is two straight lines intersecting at the origin$" title="\\ x^2+xy-2y^2=0\\ (x+\frac{1}{2}y)^2-\frac{9}{4}y^2=0\\ (x+2y)(x-y)=0~~~~\Rightarrow y=x$ or $y=-\frac{1}{2}x\\ ~\\ $Differentiating both functions we get$\\ \frac{dy}{dx}=1$ or $\frac{dy}{dx}=-\frac{1}{2}\\ ~\\ $Hence, the graph of the function is two straight lines intersecting at the origin$" /></a>
 

kingkong123

Member
Joined
Dec 20, 2011
Messages
98
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

<a href="http://www.codecogs.com/eqnedit.php?latex=\\\textup{Sketch the following locus of z on an Argand diagram. }\\\left | z @plus;2i \right |=Re(z)@plus;2i" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\\textup{Sketch the following locus of z on an Argand diagram. }\\\left | z +2i \right |=Re(z)+2i" title="\\\textup{Sketch the following locus of z on an Argand diagram. }\\\left | z +2i \right |=Re(z)+2i" /></a>
 

nightweaver066

Well-Known Member
Joined
Jul 7, 2010
Messages
1,585
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

<a href="http://www.codecogs.com/eqnedit.php?latex=\\\textup{Sketch the following locus of z on an Argand diagram. }\\\left | z @plus;2i \right |=Re(z)@plus;2i" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\\textup{Sketch the following locus of z on an Argand diagram. }\\\left | z +2i \right |=Re(z)+2i" title="\\\textup{Sketch the following locus of z on an Argand diagram. }\\\left | z +2i \right |=Re(z)+2i" /></a>
How can a modulus result in an imaginary number? lol..
 
Last edited:

bleakarcher

Active Member
Joined
Jul 8, 2011
Messages
1,503
Gender
Male
HSC
2013
Re: 2012 HSC MX2 Marathon





Forming a polynomial









System of linear equations,



Since we know,





Solve and arrange.



Now you can deduce Lucas my neighbour.
Why is it that when I sub n=0 into F(n) I get 1/sqrt(5) when it is meant to be one?
 

kingkong123

Member
Joined
Dec 20, 2011
Messages
98
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

How can a modulus result in an imaginary number? lol..
trueeee. there was a typo in the exercise. i think it should be Re(z) + 2 not 2i. In that case it will be a parabola, focal length 1, vertex (-1,-2) , concave up. right?
 

cutemouse

Account Closed
Joined
Apr 23, 2007
Messages
2,232
Gender
Undisclosed
HSC
N/A
Re: 2012 HSC MX2 Marathon

A bit of several variables calculus...

(i) Use the method of Lagrange multipliers, or otherwise, to find the maximum value of f(x,y)=4xy on the ellipse x^2 + 4y^2=4.

(ii) Give a geometrical interpretation of the result in (i).
 

Aesytic

Member
Joined
Jun 19, 2011
Messages
141
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

trueeee. there was a typo in the exercise. i think it should be Re(z) + 2 not 2i. In that case it will be a parabola, focal length 1, vertex (-1,-2) , concave up. right?
mine ended up being a sideways parabola, so i had one that was "concave right"
 

Trebla

Administrator
Administrator
Joined
Feb 16, 2005
Messages
8,382
Gender
Male
HSC
2006
Re: 2012 HSC MX2 Marathon

Another reminder that this thread is intended for HSC students. If you want to post some uni maths questions, go to the extracurricular topics forum.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 2)

Top