RealiseNothing
what is that?It is Cowpea
Re: HSC 2013 4U Marathon
![](https://latex.codecogs.com/png.latex?\bg_white cos(A+B)=cosAcosB-sinAsinB)
![](https://latex.codecogs.com/png.latex?\bg_white cos(A-B)=cosAcosB+sinAsinB)
Subtracting the two gives:
![](https://latex.codecogs.com/png.latex?\bg_white 2sinAsinB=cos(A-B)+cos(A+B))
![](https://latex.codecogs.com/png.latex?\bg_white sinAsinB=\frac{1}{2}[cos(A-B)+cos(A+B)])
Using this on each term in the series gives:
![](https://latex.codecogs.com/png.latex?\bg_white \frac{ncos\theta}{2}-\frac{1}{2}[cos3\theta +cos5\theta + ... + cos(2n+1)\theta])
Now consider:
![](https://latex.codecogs.com/png.latex?\bg_white cis^3\theta + cis^5\theta + ... + cis^{2n+1}\theta = \frac{cis^3\theta(cis^{2n}\theta-1)}{cis^2\theta-1})
Taking the real part of this gives the sum of the cosines we need, so since I cbf evaluating the real part of this, your series is equal to:
![](https://latex.codecogs.com/png.latex?\bg_white \frac{ncos\theta}{2}-\frac{1}{2}Re(\frac{cis^{2n+3}\theta-cis^3\theta}{cis^2\theta-1}))
First method I used was:Nice work guys,
![]()
Subtracting the two gives:
Using this on each term in the series gives:
Now consider:
Taking the real part of this gives the sum of the cosines we need, so since I cbf evaluating the real part of this, your series is equal to: