Sy123
This too shall pass
- Joined
- Nov 6, 2011
- Messages
- 3,725
- Gender
- Male
- HSC
- 2013
Re: HSC 2014 4U Marathon - Advanced Level
![](https://latex.codecogs.com/png.latex?\bg_white \\ $Let$ \ x = a+b-c \ , \ y = b + c - a \ , \ z = a+c - b \\ \\ \Rightarrow \ $Prove$ \ \frac{x+y}{2} \cdot \frac{x+z}{2} \cdot \frac{y+z}{2} \geq xyz \\ \\ $If$ \ x,y, z \ $are positive, (i.e. sides of a triangle)$ \\ \frac{x+y}{2} \geq \sqrt{xy} \ \ (1) \ , \frac{y+z}{2} \geq \sqrt{yz} \ \ (2) \ , \ \frac{x+z}{2} \geq \sqrt{xz} \ \ (3) \\ \\ (1) \cdot (2) \cdot (3) \\ \\ \Rightarrow \ (x+y)(x+z)(y+z) \geq 8xyz \ \square )
![](https://latex.codecogs.com/png.latex?\bg_white \\ $If$ \ a,b,c \ $are not sides of a triangle, and they are positive, then, at least 1 of$ \ x,y,z \ $is negative$ \\ \\ $If$ \ x,y,z \ $at least 2 are negative$ \\ \\ a+b \leq c \ , \ (1) \\ a+c \leq b \Rightarrow \ -b \leq -a-c \ (2) \\ \\ (1) + (2) \Rightarrow \ \therefore \ a+b-b \leq -a-c+c \Rightarrow \ a\leq -a \Rightarrow \ a\leq 0 \\ \\ $Similary we do the same to get$ \ b \leq 0 \ $and$ \ c \leq 0 \\ \\ $But since$ \ a,b,c \geq 0 \Rightarrow \ a=b=c=0 \\ \\ $Meaning$ \ 0 \geq 0 \ $which is true$ \ \square )
![](https://latex.codecogs.com/png.latex?\bg_white \\ $If only one of$ \ x,y,z \ $is negative, then$ \ abc \geq 0 \geq xyz \ \square )
EDIT: There is a small error with my solution when looking to the case that at least 2 of x,y,z are negative, it has been amended
EDIT: There is a small error with my solution when looking to the case that at least 2 of x,y,z are negative, it has been amended
Last edited: