This integral is just an exercise in substitution lol
I'll use the notation I[a,b]...dx to represent the definite integral from a to b wrtx.
Let J=I[0,pi/2]log(sinx)dx
Let x=pi/2-t in the integral
dx=-dt
I[0,pi/2]log(sinx)dx=I[pi/2,0]-log(cost)dt
=I[0,pi/2]log(cost)dt=I[0,pi/2]log(cosx)dx...