$\noindent \textbf{(i)} Since $h$ increases at a constant rate, then $h = at$, for some constant $a$. Also, $v = \frac{dx}{dt}$ so $\frac{dx}{dt} = \frac{A}{h} = \frac{A}{at}$. If we let $k = \frac{A}{a}$ where $k$, $A$ and $a$ are constants then $\frac{dx}{dt} = \frac{k}{t}
$\noindent...