$\noindent \textbf{(a)} Since $\angle GKC = 45\degree$ then $\triangle GKC$ is an isosceles right-angled triangle, therefore, $CK = GC = h$. In $\triangle BCK$, $\angle BCK = 180\degree - 45\degree = 135 \degree$. Now apply the cosine rule, \\ \begin{align*} \quad BK^2 &= CK^2 + BC^2 -...