Can someone check my logic?
$ Let A, B, and C be sets. Prove that if $ A - B \subseteq C $ and $ A \cap B \subseteq C $ then $ A \subseteq C. $
$ Let $ x \in A - B \\ \Leftrightarrow \ x \ \in \ A \cap B^c
\therefore $ Either $ x \in A $ \Leftrightarrow x \in C \therefore A \subseteq C...