Search results

  1. kawaiipotato

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon Two more questions \int_0^1 2^{log_e(x)} dx \int_0^1 \log^{log_ex}(2) dx
  2. kawaiipotato

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon $ I $ = \int_0^{\frac{\pi}{2}} \frac{cosx - sinx}{cosx+sinx} dx = [\ln(cosx+sinx)]_0^\frac{\pi}{2} = 0 ----------------- $ New question $ \int_0^{\frac{\pi}{2}} \frac{1}{1+tan^{\pi}(x)} dx
  3. kawaiipotato

    ACPW help

    $ Ball A $: v = 15, \theta = 60 x'' = 0 . y'' = -10 x' = vcos\theta = 15cos60 . y' = -10t + vsin\theta = -10t + 15sin60 x = 15tcos60 . y = -5t^2 + 15tsin60 $ Let y = 0, for time at which ball A lands $ \therefore t = 3sin60 $ Hence, $ x = 15(3sin60)(cos60) x =...
  4. kawaiipotato

    HSC 2015 MX2 Marathon (archive)

    Re: HSC 2015 4U Marathon $ Assume 4n + 2 = (a-b)(a+b) is true $ $ The factors of 4n+2 differ by 2b (where b is an integer) $ \therefore $ If a is even, b is odd, then a+b is odd and a-b is odd $ $ If a is odd, b is even, then a+b is odd and a-b is odd$ $ If a is even, b is even...
  5. kawaiipotato

    ACPW help

    You could use inequalities, which is pretty fast v^2=4x-x^2 v^2 = - ((x-2)^2 - 4) v^2 = 4 - (x-2)^2 (x-2)^2 \geq 0 -(x-2)^2 \leq 0 4 - (x-2)^2 \leq 4 v^2 \leq 4 -2 \leq v \leq 2 $ Hence, maximum v = 4
  6. kawaiipotato

    HSC 2015 MX2 Marathon (archive)

    Re: HSC 2015 4U Marathon wouldn't it be in terms of z? how would you integrate with respect to theta?
  7. kawaiipotato

    log question

    It's the same as when you have 3x + x = 4x. This case you have 3log(x)y + log(x)y. You add 3 "lots" of log(x)y with 1 "lot" of log(x)y to give 4 "lots" of log(x)y, so 3log(x)y + log(x)y = 4log(x)y
  8. kawaiipotato

    HSC 2015 MX2 Marathon (archive)

    Re: HSC 2015 4U Marathon Dunno how to use those complex identities but you could use the expansions: cos(a-b) = cosacosb+sinasinb cos(a+b) = cosacosb-sinasinb $ Subtracting, cos(a-b) - cos(a+b) = 2sinasinb \frac{cos(a-b) - cos(a+b)}{2} = sinasinb $ Let a = n\theta, b = 2\theta...
  9. kawaiipotato

    State rank differentation

    how would they determine the degree of sophistication?
  10. kawaiipotato

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon let u = sin(lnx) + cos(lnx) dv = x^{2} dx du = \frac{dx}{x}(cos(lnx) - sin(lnx)) v = \frac{x^3}{3} $ I = $ \frac{x^3}{3}(sin(lnx) + cos(lnx)) + \frac{1}{3} \int x^2(sin(lnx) - cos(lnx)) dx $Let new integral = J $ J: let u = sin(lnx) -...
  11. kawaiipotato

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon $ From the identity, $ cot(a+b) = \frac{cotacotb - 1}{cota+cotb} cot^{-1}a - cot^{-1}b = cot^{-1}(\frac{ab - 1}{a+b}) $ I = $ \int cot^{-1}(x(x+1) - 1) dx $ I = $ \int cot^{-1}(\frac{x(x+1) - 1}{(x+1) - (x)}) dx $ I = $ \int cot^{-1}(x+1) -...
  12. kawaiipotato

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon = sqrt(sin^2 x + cos^2 x + 2sinxcosx) dx = sqrt((sinx + cosx)^2) dx = |sinx+cosx|
  13. kawaiipotato

    HSC 2015 MX2 Marathon ADVANCED (archive)

    Re: HSC 2015 4U Marathon - Advanced Level that seems familiar to a question in the maths competition by AMT last year. couldnt do it lol
  14. kawaiipotato

    A soft drink.

    My teacher told me that shaking it would cause the molecules to collide, and produce a big CO2 "bubble", while it breaks surface tension allowing it to escape. Also shaking it would slightly increase temperature, shifting it to CO2 (g)
  15. kawaiipotato

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon It doesn't, collect the inside of your log function and use log rules to take out the division. you get something like + 1/k ln(e^kx) which simplifies to be x
  16. kawaiipotato

    HSC 2015 MX2 Marathon (archive)

    Re: HSC 2015 4U Marathon $ Sketching the curve, y = 1/x $ $ Upper rectangle $ > \int_{1}^{\sqrt{x}} \frac{dx}{x} > 0 0< \int_1^{\sqrt{x}} \frac{dx}{x} < \sqrt{x} - 1 0 < ln(\sqrt{x}) < \sqrt{x} - 1 0 < ln(x) < 2(\sqrt{x} - 1) $ Multiplying by x $ 0 < xln(x) < 2(x\sqrt{x} -...
  17. kawaiipotato

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon I don't see why it should be equal in my second last line, I used substituion of t = tan2x, where x = 0 and x = pi/2
  18. kawaiipotato

    Quick Motion Question

    \frac{dv}{dt} = -10-2v \frac{dv}{5+v} = -2dt log_e_(5+v) = -2t + C $ At t = 0, v = 0 C = log_e_5 log_e_(5+v) = -2t + log_e_5 2t = log_e_(\frac{5}{5+v}) e^{-2t} = \frac{5+v}{5} 5 + v = 5e^{-2t} v = 5(e^{-2t} - 1) \frac{dx}{dt} = 5e^{-2t}- 1 dx = 5e^{-2t} - 1 dt...
  19. kawaiipotato

    HSC 2015 MX2 Integration Marathon (archive)

    Re: MX2 2015 Integration Marathon \int_0^{\pi/2}{\frac{dx}{sin^4x +cos^4x} \int_0^{\pi/2}{\frac{dx}{(sin^{2}x + cos^{2}x)^{2} - 2cos^{2}xsin^{2}x} \int_0^{\pi/2}{\frac{dx}{1 - \frac{1}{2}sin^{2}2x} Let t = tan2x \therefore \frac{t^2}{1+t^{2}} = sin^{2}2x \int_0^1...
  20. kawaiipotato

    basic trig question

    If x and y are acute angles, it must lie in the first quadrant, hence sinx, siny, cosx, cosy must be positive $ Given $ sinx = \frac{2}{3} $ Draw up a right-angled triangle, with an angle of 'x' and opposite side being 2 and hypotenuse being 3. $ $ the sine of this angle equals 2/3 and...
Top