If one wanted to actually find examples of
![](https://latex.codecogs.com/png.latex?\bg_white M )
, here is an approach that works for
![](https://latex.codecogs.com/png.latex?\bg_white M \in \mathbb R )
.
I'll use the hyperbolic function
![](https://latex.codecogs.com/png.latex?\bg_white \cosh )
and its inverse, which aren't in the MX2 syllabus but their definitions are quite simple to understand:
![](https://latex.codecogs.com/png.latex?\bg_white \cosh x = \frac 12 \left(e^x+e^{-x}\right))
and
Now, let
![](https://latex.codecogs.com/png.latex?\bg_white f(x) = x^n + \frac 1{x^n})
,
be a real function where
![](https://latex.codecogs.com/png.latex?\bg_white n \in \mathbb Z )
.
If
![](https://latex.codecogs.com/png.latex?\bg_white n )
is even, then
![](https://latex.codecogs.com/png.latex?\bg_white f(x) = f(-x))
.
If
![](https://latex.codecogs.com/png.latex?\bg_white n )
is odd, then
![](https://latex.codecogs.com/png.latex?\bg_white f(x)=-f(-x) )
.
That is, the parity of
![](https://latex.codecogs.com/png.latex?\bg_white f )
is the parity of
![](https://latex.codecogs.com/png.latex?\bg_white n )
.
So without loss of generality, assume
![](https://latex.codecogs.com/png.latex?\bg_white M > 0, \, n > 0 )
and make the substitution
![](https://latex.codecogs.com/png.latex?\bg_white M = e^x )
.
If
![](https://latex.codecogs.com/png.latex?\bg_white f(M) = k)
for some
![](https://latex.codecogs.com/png.latex?\bg_white k \in \mathbb Z )
, then
![](https://latex.codecogs.com/png.latex?\bg_white e^{nx}+e^{-nx} = k)
, so
Since
![](https://latex.codecogs.com/png.latex?\bg_white x = \log M)
,
![](https://latex.codecogs.com/png.latex?\bg_white M^n = \frac k2 \pm \sqrt{\frac {k^2}4 - 1})
.
We require
![](https://latex.codecogs.com/png.latex?\bg_white |k| \ge 2)
, which should be expected, as
![](https://latex.codecogs.com/png.latex?\bg_white y + (1/y) \ge 2 )
for all positive
![](https://latex.codecogs.com/png.latex?\bg_white y )
.
The original proposition
is equivalent (I believe) to
![](https://latex.codecogs.com/png.latex?\bg_white 2 \cosh(x) \in \mathbb Z \implies 2 \cosh(nx) \in \mathbb Z )
.
We also find an interesting identity:
for all
![](https://latex.codecogs.com/png.latex?\bg_white |x| \ge 2 )
.
EDIT: It's worth noting that this shows that if
![](https://latex.codecogs.com/png.latex?\bg_white M \in \mathbb Z )
, then
![](https://latex.codecogs.com/png.latex?\bg_white k = \pm 2 )
.
If
![](https://latex.codecogs.com/png.latex?\bg_white M^n = 1/2(k \pm \sqrt{k^2 - 4}))
then
![](https://latex.codecogs.com/png.latex?\bg_white \sqrt{k^2 - 4} \in \mathbb Z)
.
The gap between the second and third perfect square is
![](https://latex.codecogs.com/png.latex?\bg_white 3^2-2^2 = 5 > 4 )
, and this gap will only increase as you go further out.
So
![](https://latex.codecogs.com/png.latex?\bg_white k^2 \le 2^2 \implies k = \pm 2)
. Subbing in these values confirms that
![](https://latex.codecogs.com/png.latex?\bg_white M^n = \pm 1 \implies M = \pm 1)
.