lol...
The underlying problem with that statement is that it completely violates the principle of conservation of energy. Energy cannot be created or destroyed etc.
Lets say you have 1kg of fuel, when that fuel is consumed it will release a certain amount of energy, this amount is constant and independent of time. That 1kg of fuel will release the same amount of energy regardless of whether it's consumed in a few nanoseconds or over the span of a hundred years.
You are assuming 100% efficiency which is never the case. I'm simply stating that if the efficiency was improved such that the thrust was greater and less of the fuel was wasted, then the maximum speed would be greater.
The amount of thrust changes how quickly you can reach the maximum speed, not the actual maximum speed.
Disagree. A greater thrust is a greater force.
If
then agreeably a greater thrust would result in a greater acceleration.
Your statement that it would change how quickly you can reach the maximum speed is probably correct, I don't want to have to calculate what force is needed to accelerate a mass to a certain speed, but the problem is, a LESSER THRUST would mean that the rocket would not be able to apply the force required to reach a certain speed.
For example, if a rocket with a certain thrust T could attain a maximum speed 0.2c when its thrust is applied, then rocket with thrust T+x where x is some value would be able to attain a speed greater than 0.2c, yet not by much. When the thrust is infinite, then the rocket should be able to reach the speed of light (or just below it, technically).
Your statements are correct for nonrelativistic speeds, but not for relativistic ones, which can't be ignored if we are seeking the MAXIMUM speed of the rocket.
cf bottom of page 88 of Physics 2.
Note in figure 5.14 that as the speed of an object approaches the speed
of light c, its mass approaches an infinite value. It is this enormous
increase in mass that prevents any object from exceeding the speed of
light. This is because an applied force is required to create acceleration.
Acceleration leads to higher velocities, which eventually leads to
increased mass. This means that further accelerations will require evergreater
force. As mass becomes infinite, an infinite force would be
required to achieve any acceleration at all. Sufficient force can never be
supplied to accelerate beyond the speed of light.
The greater the thrust, the greater the force.