jarro_2783
Member
I'll draw a little diagram to illustrate question 9.
Part 1 and 2 are cross sections of a small section side on and the top respectively, both of the cut ring. Since the ring is cut, any currents that may be induced will flow in loops as in the diagram. They will have their associated magnetic fields which as shown in the diagram will cancel each other out with respect to the magnet they are being dropped over. Therefore there will be no eddie current produced that can possibly slow down the ring.
If you look at part 3 it shows the connected ring. This shows how because it is connected it can now have an eddie current that loops completely around the ring. This allows a magnetic field that doesn't cancel itself out to be produced. This magnetic field will loop through the middle of the ring and attempt to push the ring away from the magnet thus slowing its decent.
Therefore the answer is c because ring R has no possible eddie current producable that will slow its decent.
Part 1 and 2 are cross sections of a small section side on and the top respectively, both of the cut ring. Since the ring is cut, any currents that may be induced will flow in loops as in the diagram. They will have their associated magnetic fields which as shown in the diagram will cancel each other out with respect to the magnet they are being dropped over. Therefore there will be no eddie current produced that can possibly slow down the ring.
If you look at part 3 it shows the connected ring. This shows how because it is connected it can now have an eddie current that loops completely around the ring. This allows a magnetic field that doesn't cancel itself out to be produced. This magnetic field will loop through the middle of the ring and attempt to push the ring away from the magnet thus slowing its decent.
Therefore the answer is c because ring R has no possible eddie current producable that will slow its decent.