• YOU can help the next generation of students in the community!
    Share your trial papers and notes on our Notes & Resources page

MX2 Marathon (1 Viewer)

HazzRat

H̊ͯaͤz͠z̬̼iẻͩ̊͏̖͈̪
Joined
Aug 29, 2021
Messages
1,181
Gender
Male
HSC
2024
Does anyone have a cheat sheet for proving shapes in complex numbers? Whenever I'm given a question like "prove these complex points form a parallelogram" I never know how to prove it and the answer's always smthn random like "the diagonals bisect each other". So is there a method of knowing the proof for each shape?
 

Average Boreduser

Rising Renewal
Joined
Jun 28, 2022
Messages
3,077
Location
Somewhere
Gender
Male
HSC
2026
Does anyone have a cheat sheet for proving shapes in complex numbers? Whenever I'm given a question like "prove these complex points form a parallelogram" I never know how to prove it and the answer's always smthn random like "the diagonals bisect each other". So is there a method of knowing the proof for each shape?
just look up properties lol. no way of getting around that
 

liamkk112

Well-Known Member
Joined
Mar 26, 2022
Messages
988
Gender
Female
HSC
2023
Does anyone have a cheat sheet for proving shapes in complex numbers? Whenever I'm given a question like "prove these complex points form a parallelogram" I never know how to prove it and the answer's always smthn random like "the diagonals bisect each other". So is there a method of knowing the proof for each shape?
u just got to memorise the quadrilateral properties no way around it

usually though:
- parallelogram -> pairs of equal side lengths, parallel sides
- square -> equal side lengths, 90 degrees between sides, parallel sides
- rectangle -> 90 degrees between sides, parallel sides
- rhombus -> pairs of equal side lengths, parallel sides, diagonals meet at 90 degrees and bisect

there r also kites but i forget how those work and they're relatively uncommon
 

Luukas.2

Well-Known Member
Joined
Sep 21, 2023
Messages
449
Gender
Male
HSC
2023
Does anyone have a cheat sheet for proving shapes in complex numbers? Whenever I'm given a question like "prove these complex points form a parallelogram" I never know how to prove it and the answer's always smthn random like "the diagonals bisect each other". So is there a method of knowing the proof for each shape?
There is always a purely algebraic method, which is usually awful. There are sometimes purely geometric methods (like for arg(z - i) = arg(z + 1) etc.). If there isn't an obvious purely geometric approach, the efficient answer is likely to involve:
  • treating the complex numbers as vectors
  • looking for geometric properties that proves the required result
  • demonstrating these properties through algebraic representation of vectors
For example... the complex number z represents a point A in the first quadrant. If O is the origin, B lies in the second quadrant, and OACB is a square, find the complex number representing point C. Under what conditions is C located in the second quadrant.

A diagram should make it obvious that side OB is adjacent to side OA in the square.

Properties of a square then dictate that OB = i.OA, and so the complex number iz represents B.

Then, using vector reasoning:

Hence, the point C is represented by z(1 + i), and so is in the second quadrant if


from the diagram (as A must be in quadrant 1 and, for C to be in quadrant 2 given angle COA is 45 degrees, OA must be inclined at at least 45 degrees above the real axis), or (algebraically), by solving:
 

HazzRat

H̊ͯaͤz͠z̬̼iẻͩ̊͏̖͈̪
Joined
Aug 29, 2021
Messages
1,181
Gender
Male
HSC
2024
what bs is this. Can someone plz explain to me how these r equal
rh534tgerhtrg4r.PNG
 
Last edited:

liamkk112

Well-Known Member
Joined
Mar 26, 2022
Messages
988
Gender
Female
HSC
2023
what bs is this. Can someone plz explain to be how these r equal
View attachment 42231
if z-1/z+1 is purely imaginary, then the real part is zero, aka that x(x+1) + y(y-1) = 0
=> x^2 + x + y^2 - y = 0
=> x^2 + x + 1/4 + y^2 - y + 1/4 = 1/4 + 1/4 (completing the square)
=> (x+1/2)^2 + (y-1/2)^2 = 1/2
so basically it should be = 1/2, u can see they made a mistake because they noted that radius is 1/sqrt(2) which makes sense if
(x+1/2)^2 + (y-1/2)^2 = 1/2
 

liamkk112

Well-Known Member
Joined
Mar 26, 2022
Messages
988
Gender
Female
HSC
2023
if z-1/z+1 is purely imaginary, then the real part is zero, aka that x(x+1) + y(y-1) = 0
=> x^2 + x + y^2 - y = 0
=> x^2 + x + 1/4 + y^2 - y + 1/4 = 1/4 + 1/4 (completing the square)
=> (x+1/2)^2 + (y-1/2)^2 = 1/2
so basically it should be = 1/2, u can see they made a mistake because they noted that radius is 1/sqrt(2) which makes sense if
(x+1/2)^2 + (y-1/2)^2 = 1/2
also there should be an open circle at (-1, 0) as this would make the denominator 0
 

Luukas.2

Well-Known Member
Joined
Sep 21, 2023
Messages
449
Gender
Male
HSC
2023
also there should be an open circle at (-1, 0) as this would make the denominator 0
And is also impossible, as it makes

which is not purely imaginary - so two open circles, at opposite ends of a diameter.
 

Luukas.2

Well-Known Member
Joined
Sep 21, 2023
Messages
449
Gender
Male
HSC
2023
what bs is this. Can someone plz explain to me how these r equal
View attachment 42231
Note that a purely geometric approach would provide the graph, with the points and excluded, and is quicker:


Geometrically, this statement tells us that the angle between the vector from to and the vector from to is a right angle.

Applying the converse of the angle in a semicircle theorem, it follows that lies on one of the two semi-circles whose diameter is the interval joining and .

The two end points of the diameter, and , are excluded from the locus as each results in one of the two vectors being the zero vector, and hence one of the two arguments being and thus undefined.

---

Taking the algebraic approach, the two constraints that lead to points being excluded are that and . The point (-1, 0) violates both constraints, whilst the point (0, 1) violates only the second constraint.
 

HazzRat

H̊ͯaͤz͠z̬̼iẻͩ̊͏̖͈̪
Joined
Aug 29, 2021
Messages
1,181
Gender
Male
HSC
2024
Can someone plz explain to me the second last line of reasoning? That is: z1^2 + z2^2 = z1^2*(1+a^2). How did they get that?
jakaksjfj.PNG
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top