lyounamu
Reborn
- Joined
- Oct 28, 2007
- Messages
- 9,998
- Gender
- Male
- HSC
- N/A
A) This is "prove" question. So, you don't need to start from L.H.S. You can right separately and say in the ends that they are same like the followings:adidasboy said:Prove the Identities:
A) (a+b+c)(ab+bc+ca)-abc=(a+b)(b+c)(c+a)
B) (ax+by)^2+(ay-bx)^2+c^2(x^2+y^2)=(x^2+y^2)(a^2+b^2+c^2)
How do I work these ones out?
Am I meant to just simplify LHS & RHS. And they will equal?
C) If 2x =a+b+c, show that (x-a)^2+(x-b)^2+(x-c)^2+x^2=a^2+b^2+c^2
Thanks in advance.
L.H.S = (a+b+c)(ab+bc+ca) - abc
= a^2b + abc + ca^2 + ab^2+b^2c+abc + abc+bc^2+c^2a - abc
= a^2b + abc + ca^2 + ab^2 + b^2c + abc + bc^2 +ac^2
R.H.S = (a+b)(b+c)(c+a)
= (ab + ac + b^2 +bc)(c+a)
= abc + ac^2 + b^2c +bc^2 + a^2b + ca^2 +ab^2 + abc
Therefore, L.H.S = R.H.S
B) L.H.S = (ax + by)^2 + (ay-bx)^2 + c^2(x^2+y^2)
= a^2x^2 + b^2y^2 + 2abxy + a^2y^2 + b^2x^2 -2abxy +c^2x^2 + c^2y^2
= a^2x^2 + b^2y^2 + a^2y^2 + b^2x^2 +c^2x^2 + c^2y^2
= x^2 ( a^2 + b^2 + c^2) + y^2 (a^2 + b^2 + c^2)
= (x^2 + b^2) (a^2 + b^2 + c^2)
= R.H.S
C) L.H.S = (x-a)^2+(x-b)^2+(x-c)^2+x^2
= x^2 - 2ax + a^2 +x^2 - 2bx + b^2 + x^2 - 2cx + c^2 + x^2
= 4x^2 - 2ax - 2bx - 2cx +a^2 + b^2 + c^2
= (2x)^2 - 2x(a +b + c) +a^2 + b^2 +c^2
= 2x (2x - a - b - c ) + a^2 + b^2 + c^2
= 2x (a+b+c - a - b - c ) + a^2 + b^2 + c^2 (since 2x =a+b+c)
= 2x . 0 + a^2 + b^2 +c^2
= a^2 + b^2 + c^2
= R.H.S
You just needed to simplify all thes questions to solve them. When you get the "prove" question, you don't need to start from left-hand side. You can start from both sides and come down to say that they are equal or you can just start from right-hand side.
However, you need to start from left-hand side when you get the "show" questions.
Last edited: