4 Unit Revising Marathon HSC '10 (3 Viewers)

The Nomad

Member
Joined
Oct 11, 2009
Messages
123
Gender
Male
HSC
2010
I got it out like this, but i'm wondering whether a polynomial proof is possible. The polynomial is degree 3 with roots tan(A/2), tan(B/2), tan(C/2) and sum of roots=product of roots.
I think you mean sum of roots = product of roots for the equation with roots Tan A, Tan B and Tan C...
 

shaon0

...
Joined
Mar 26, 2008
Messages
2,023
Location
Guess
Gender
Male
HSC
2009
Let n=1:
S {x=inf to x=0} e^-x dx = -[e^-(inf)-1] = -(0-1) = 1 =0!

Let n=k:
Assume, S {x=inf to x=0} x^(k-1).e^-x dx=(k-1)!

Let n=k+1:
S {x=inf to x=0} x^(k).e^-x dx
= -[e^-x.x^k] {x=inf to x=0} - k.S {x=inf to x=0} x^(k-1).e^-x dx
= -(0-0)+k(k-1)! [As e^x dominates x^k]
= k!
 

Trebla

Administrator
Administrator
Joined
Feb 16, 2005
Messages
8,382
Gender
Male
HSC
2006
Let n=1:
S {x=inf to x=0} e^-x dx = -[e^-(inf)-1] = -(0-1) = 1 =0!

Let n=k:
Assume, S {x=inf to x=0} x^(k-1).e^-x dx=(k-1)!

Let n=k+1:
S {x=inf to x=0} x^(k).e^-x dx
= -[e^-x.x^k] {x=inf to x=0} - k.S {x=inf to x=0} x^(k-1).e^-x dx
= -(0-0)+k(k-1)! [As e^x dominates x^k]
= k!
sign error?
 

addikaye03

The A-Team
Joined
Nov 16, 2006
Messages
1,256
Location
Albury-Wodonga, NSW
Gender
Male
HSC
2008
They're angles in a triangle.
Yeah my bad, that's what i meant lol

Alternative Answer:

Let x=A/2, y=B/2 and z=C/2

tan(x+y+z)=

[tanx+tany+tanz+(tanxtanytanz)]/[1-(tanytanx+tanxtanz+tanytanz)

But since x+y+z=90 degrees (since A+B+C=180) therefore is undefined

Hence tan(y)tan(x)+tan(x)tan(z)+tan(y)tan(z)=1

tan(A/2)tan(B/2)+tan(A/2)tan(C/2)+tan(B/2)tan(C/2)=1 #
 

shaon0

...
Joined
Mar 26, 2008
Messages
2,023
Location
Guess
Gender
Male
HSC
2009
I've just made up a question. it's quite easy though.
a) Prove by induction or otherwise:
[a1+a2+...+an]/n > (a1a2...an)^(1/n)

b) Hence or otherwise, prove that (1-e)^-n=n^n.e^(n/2)(1-n) for n large where n E Z+
HINT: Replace a1,a2,...,an by 1,e,e^2,...,e^n
 
Last edited:

shaon0

...
Joined
Mar 26, 2008
Messages
2,023
Location
Guess
Gender
Male
HSC
2009
Thanks i got a heap of interesting Q actually, been doing stuff from "Art and craft of problem solving"...here and there.
Yeah, nw. Fancy solving my question? It's pretty easy if you have seen the hint. Otherwise, it's pretty difficult
 

lolman12567

Member
Joined
Jun 28, 2008
Messages
89
Gender
Male
HSC
2010
(i) Find the sum 1 + w + w2 + w3 +... to n terms, considering the cases n=3k, n=3k+1, n=3k+2 where k is an integer.

(ii) Show that
(1 - w+w2)(1 - w2 +w4)(1 - w2 +w8) ... to 2n factors = 22n
 

Users Who Are Viewing This Thread (Users: 0, Guests: 3)

Top