How to prove the above ^^ Thanks!
Attachments
-
1.3 KB Views: 41
Last edited:
<a href="http://www.codecogs.com/eqnedit.php?latex=\begin{align*} LHS &=\frac{1@plus;\sin A}{1-\sin A}\\ &=\frac{(1@plus;\sin A)^2}{1-\sin^2A}\\ &=\frac{(1@plus;\sin A)^2}{\cos^2A}\\ &=\left (\frac{1@plus;\sin A}{\cos A}\right )^2\\ &=\left (\frac{1}{\cos A}@plus;\frac{\sin A}{\cos A} \right )^2\\ &=\left (\frac{1}{\cos A}@plus;\tan A \right)^2\\ &=RHS \end{align*}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\begin{align*} LHS &=\frac{1+\sin A}{1-\sin A}\\ &=\frac{(1+\sin A)^2}{1-\sin^2A}\\ &=\frac{(1+\sin A)^2}{\cos^2A}\\ &=\left (\frac{1+\sin A}{\cos A}\right )^2\\ &=\left (\frac{1}{\cos A}+\frac{\sin A}{\cos A} \right )^2\\ &=\left (\frac{1}{\cos A}+\tan A \right)^2\\ &=RHS \end{align*}" title="\begin{align*} LHS &=\frac{1+\sin A}{1-\sin A}\\ &=\frac{(1+\sin A)^2}{1-\sin^2A}\\ &=\frac{(1+\sin A)^2}{\cos^2A}\\ &=\left (\frac{1+\sin A}{\cos A}\right )^2\\ &=\left (\frac{1}{\cos A}+\frac{\sin A}{\cos A} \right )^2\\ &=\left (\frac{1}{\cos A}+\tan A \right)^2\\ &=RHS \end{align*}" /></a>
How to prove the above ^^ Thanks!