Proving Trig identities (1 Viewer)

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,044
Gender
Male
HSC
2012


How to prove the above ^^ Thanks!
<a href="http://www.codecogs.com/eqnedit.php?latex=\begin{align*} LHS &=\frac{1@plus;\sin A}{1-\sin A}\\ &=\frac{(1@plus;\sin A)^2}{1-\sin^2A}\\ &=\frac{(1@plus;\sin A)^2}{\cos^2A}\\ &=\left (\frac{1@plus;\sin A}{\cos A}\right )^2\\ &=\left (\frac{1}{\cos A}@plus;\frac{\sin A}{\cos A} \right )^2\\ &=\left (\frac{1}{\cos A}@plus;\tan A \right)^2\\ &=RHS \end{align*}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\begin{align*} LHS &=\frac{1+\sin A}{1-\sin A}\\ &=\frac{(1+\sin A)^2}{1-\sin^2A}\\ &=\frac{(1+\sin A)^2}{\cos^2A}\\ &=\left (\frac{1+\sin A}{\cos A}\right )^2\\ &=\left (\frac{1}{\cos A}+\frac{\sin A}{\cos A} \right )^2\\ &=\left (\frac{1}{\cos A}+\tan A \right)^2\\ &=RHS \end{align*}" title="\begin{align*} LHS &=\frac{1+\sin A}{1-\sin A}\\ &=\frac{(1+\sin A)^2}{1-\sin^2A}\\ &=\frac{(1+\sin A)^2}{\cos^2A}\\ &=\left (\frac{1+\sin A}{\cos A}\right )^2\\ &=\left (\frac{1}{\cos A}+\frac{\sin A}{\cos A} \right )^2\\ &=\left (\frac{1}{\cos A}+\tan A \right)^2\\ &=RHS \end{align*}" /></a>
Also, the quickest way to post an equation from CodeCogs is to go to the box at the bottom where it has the URL and select HTML (Edit). Then you can just copy and paste that code into your post.
 

Ferox

Member
Joined
Oct 15, 2009
Messages
63
Gender
Male
HSC
2010
Multiply the LHS by (1+sinA)/(1+sinA). The top is now (1+sinA)^2 and the bottom is the difference of two squares 1-(sinA)^2 = (cosA)^2
LHS = (1+sinA)^2/(cosA)^2 = [(1+sinA)/cosA]^2 = [1/cosA + tanA]^2
 

kazemagic

Member
Joined
Feb 8, 2012
Messages
626
Gender
Male
HSC
2014
I got to the 4th last line and didn't know I had to factorise the power of 2(face palm lol)
Yes, I will select HTML in the future, first time using a maths equation editor lol
Thanks for the answer!
 

kazemagic

Member
Joined
Feb 8, 2012
Messages
626
Gender
Male
HSC
2014
Got another question,
<a href="http://www.codecogs.com/eqnedit.php?latex=(cosA@plus;\frac{1}{cosA})\times\frac{1}{tanA}=\frac{cos^2A@plus;1}{sinA}" target="_blank"><img src="http://latex.codecogs.com/png.latex?(cosA+\frac{1}{cosA})\times\frac{1}{tanA}=\frac{cos^2A+1}{sinA}" title="(cosA+\frac{1}{cosA})\times\frac{1}{tanA}=\frac{cos^2A+1}{sinA}" /></a>

Thanks!
 

zeebobDD

Member
Joined
Oct 23, 2011
Messages
414
Gender
Male
HSC
2012
make a common factor for cosa + 1/cosa then multiply it by 1/tana knowing that tan a is equal to sina/cosa and theres your answer
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top