Registered User
Member
- Joined
- May 4, 2013
- Messages
- 110
- Gender
- Male
- HSC
- N/A
Re: MX2 Integration Marathon
![](https://latex.codecogs.com/png.latex?\bg_white Let\ I=\int \sqrt{\tan(x)}dx)
![](https://latex.codecogs.com/png.latex?\bg_white Let\ u=\tan(x), du=(1+\tan^{2}(x))dx)
![](https://latex.codecogs.com/png.latex?\bg_white I=\int \frac{\sqrt{u}}{u^{2}+1})
![](https://latex.codecogs.com/png.latex?\bg_white Let\ v=\sqrt{u}, dv=\frac{du}{2\sqrt{u}})
![](https://latex.codecogs.com/png.latex?\bg_white I=2\int \frac{v^{2}}{v^{4}+1})
![](https://latex.codecogs.com/png.latex?\bg_white \int_0^\infty\frac{x^2}{1+x^4}dx)
![](https://latex.codecogs.com/png.latex?\bg_white Let\ t=\frac{1}{v} \therefore dt=\frac{-dv}{v^2})
![](https://latex.codecogs.com/png.latex?\bg_white \therefore I=\int \frac{\frac{1}{t^2}}{1+\frac{1}{t^4}}\times\frac{-dt}{t^2})
![](https://latex.codecogs.com/png.latex?\bg_white I=-\int \frac{dt}{1+t^4})
![](https://latex.codecogs.com/png.latex?\bg_white $This was done by Sy123 as he answered my question on the 4U marathon thread so I will just copy his solution:$)
![](https://latex.codecogs.com/png.latex?\bg_white \frac{1}{t^4+1} = \frac{1}{4\sqrt{2}}\left( \frac{2t+\sqrt{2}}{t^2+\sqrt{2}t+1} - \frac{2t-\sqrt{2}}{t^2-\sqrt{2}x+1}+\frac{\sqrt{2}}{t^2+\sqrt{2}+1} + \frac{\sqrt{2}}{t^2-\sqrt{2}t+1} \right) )
![](https://latex.codecogs.com/png.latex?\bg_white $we get:$)
![](https://latex.codecogs.com/png.latex?\bg_white = -\frac{1}{4\sqrt{2}}\left ( -log(\frac{1}{\sqrt{tanx}}^{2}-\sqrt{2} \frac{1}{\sqrt{tanx}}+1)+log(\frac{1}{\sqrt{tanx}}^2+\sqrt{2} \frac{1}{\sqrt{tanx}}+1)-2 tan^{-1}(1- \sqrt{2}\frac{1}{\sqrt{tanx}})+2 tan^{-1}(\sqrt{2} \frac{1}{\sqrt{tanx}}+1) \right ))
Method 2: which I think is outside the syllabus:
![](https://latex.codecogs.com/png.latex?\bg_white $First compute the following$)
![](https://latex.codecogs.com/png.latex?\bg_white \int(\sqrt{\tan x}+\sqrt{\cot x}) dx=\int\frac{\sin x +\cos x}{\sqrt{\sin x\cdot \cos x}}dx)
![](https://latex.codecogs.com/png.latex?\bg_white =\sqrt 2\int\frac{d(\sin x - \cos x)}{\sqrt{1-(\sin x -\cos x)^2}})
![](https://latex.codecogs.com/png.latex?\bg_white \sqrt 2\int\frac{dz}{\sqrt{1-z^2}}=\sqrt 2\sin ^{-1}z+c)
![](https://latex.codecogs.com/png.latex?\bg_white $Now compute$)
![](https://latex.codecogs.com/png.latex?\bg_white \int(\sqrt{\tan x}-\sqrt{\cot x})dx)
![](https://latex.codecogs.com/png.latex?\bg_white =\int\frac{\sin x -\cos x}{\sqrt{\sin x\cdot \cos x}}dx=\sqrt 2\int\frac{-d(\sin x+\cos x)}{\sqrt{(\sin x+\cos x)^2 -1} } dx)
![](https://latex.codecogs.com/png.latex?\bg_white $and this is same as$)
![](https://latex.codecogs.com/png.latex?\bg_white -\sqrt 2\int \frac {dw}{\sqrt{w^2 -1}}=-\sqrt 2\int\frac{\sec u\tan u}{\tan u} du=-\sqrt 2\ln(\sec u +\tan u)+C)
![](https://latex.codecogs.com/png.latex?\bg_white $Now add both the integrals to obtain the result.$)
Method 1:
Method 2: which I think is outside the syllabus:
Last edited: