Sy123
This too shall pass
- Joined
- Nov 6, 2011
- Messages
- 3,725
- Gender
- Male
- HSC
- 2013
Re: HSC 2013 4U Marathon
![](https://latex.codecogs.com/png.latex?\bg_white a_{2m-1} + a_{2m-2} = \binom{m-1}{m-1} + \left(\binom{m}{m-1} + \binom{m}{m-2} \right) + \left( \binom{m+1}{m-2} + \binom{m+1}{m-3} \right) + \dots + \left(\binom{2m-2}{0} + \binom{2m-2}{1} \right ) + \binom{2m-1}{0} )
![](https://latex.codecogs.com/png.latex?\bg_white $Use the identity$ )
![](https://latex.codecogs.com/png.latex?\bg_white \binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r} )
![](https://latex.codecogs.com/png.latex?\bg_white $and$ \ \ \binom{2m-1}{0} = \binom{2m}{0} )
![](https://latex.codecogs.com/png.latex?\bg_white \binom{m-1}{m-1} = \binom{m}{m} )
![](https://latex.codecogs.com/png.latex?\bg_white \therefore \ \ a_{2m-2} + a_{2m-1} = a_{2m} )
Do the same for n = 2k+1, and we then prove that:
for all n, therefore it is the sequence of Fibonacci numbers.
-----
![](https://latex.codecogs.com/png.latex?\bg_white $Assume$ \ \ \lim_{x \to 0} \sqrt[x]{1+x} = e)
![](https://latex.codecogs.com/png.latex?\bg_white $Define$ )
![](https://latex.codecogs.com/png.latex?\bg_white s_n = \prod_{k=0}^n \binom{n}{k} )
![](https://latex.codecogs.com/png.latex?\bg_white \lim_{n \to \infty} \frac{\left(\frac{s_{n+1}}{s_n} \right)}{\left(\frac{s_{n}}{s_{n-1}} \right)} = e )
Do the same for n = 2k+1, and we then prove that:
-----