2. Prove by mathematical induction that 3^n > 1+2n for all integers n>/2
For n=2
LHS= 9
RHS=1+2(2)=5
Thus LHS>RHS
True
Assume n=k
3^k >1+2k
RTP; n=k+1
3^k+1 > 1+2(k+1)
3^k+1> 2k+3
LHS= 3(1+2k)
= 3+6k (using assumption)
>2k+3
Thus, 3^k+1>2k+3
Therefore true for n=1, k, k+1
Thus...