Im struggling with this question:
Prove by MI that 2^2^n >= 5^2n for all integers n>=5
I did:
For n=5,
LHS=42967296
RHS=9765626
Therefore LHS>=RHS
Thus true
Assume true for n=k,
2^2^k >= 5^2k
RTP; n=k+1
2^2^k+1 >= 5^2k+2
LHS= 2^2^k . 2^2
>= 4(5^2k) - from assumption
RHS- LHS=...