Quadratic formula is the way to go.
z = -(4-2i) +/- sqrt( (4-2i)^2 -4x6) / 2
= -(4-2i) +/- sqrt( 16 - 4 -16i - 24) / 2
= -(4-2i) +/- sqrt( -12 -16i) / 2
Now to solve the squareroot, let a + ib = sqrt( -12 -16i)
Squaring both sides we get (a+ib)^2 =-12 -16i
So a^2 - b^2 + 2abi = -12 -16i
Equating real and imaginary parts we get
a^2 - b^2 = -12
a = -8/b <--------------------- sub this into above equation we get:
64/b^2 - b^2 = -12
64 - b^4 = - 12b^2
b^4 - 12b^2 - 64 = 0
(b^2 - 16)(b^2 + 4) = 0
b = +/- 4 (b must be real)
If b = +4, a = -2. If b = -4, a = +2
Thus sqrt( -12 -16i) = +/- (2 - 4i). Subbing this back into the quadratic formula we get:
z = -(4-2i) +/- +/- (2 - 4i) / 2
= -(4-2i) +/- (2 - 4i) / 2
= -(4-2i) + (2 - 4i) / 2
or = -(4-2i) - (2 - 4i) / 2
I'm sure you can do the rest