Nooblet94
Premium Member
- Joined
- Feb 5, 2011
- Messages
- 1,041
- Gender
- Male
- HSC
- 2012
Re: 2012 HSC MX1 Marathon
<a href="http://www.codecogs.com/eqnedit.php?latex=\\ f(x)=\sin x -x@plus; \frac{x^3}{6}\\ f'(x)=\cos x -1@plus;\frac{x^2}{2}\\ f''(x)=-\sin x @plus;x\\ f'''(x)=-\cos x @plus;1\\ ~\\ f(0)=\sin 0 -0@plus; \frac{0^3}{6}=0\\ f'(0)=\cos 0 -1@plus;\frac{0^2}{2}=0\\ f''(0)=-\sin 0 @plus;0=0\\ ~\\ \textrm{Now,}~f'''(x)\geq 0~\textrm{for}~x>0~\textrm{(Since the maximum value of}~\cos x~\textrm{is 1)}\\ ~\\ \textrm{Hence, by the given theorem}\\ f''(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f'(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f(x)\geq 0~\textrm{for}~x>0\\" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ f(x)=\sin x -x+ \frac{x^3}{6}\\ f'(x)=\cos x -1+\frac{x^2}{2}\\ f''(x)=-\sin x +x\\ f'''(x)=-\cos x +1\\ ~\\ f(0)=\sin 0 -0+ \frac{0^3}{6}=0\\ f'(0)=\cos 0 -1+\frac{0^2}{2}=0\\ f''(0)=-\sin 0 +0=0\\ ~\\ \textrm{Now,}~f'''(x)\geq 0~\textrm{for}~x>0~\textrm{(Since the maximum value of}~\cos x~\textrm{is 1)}\\ ~\\ \textrm{Hence, by the given theorem}\\ f''(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f'(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f(x)\geq 0~\textrm{for}~x>0\\" title="\\ f(x)=\sin x -x+ \frac{x^3}{6}\\ f'(x)=\cos x -1+\frac{x^2}{2}\\ f''(x)=-\sin x +x\\ f'''(x)=-\cos x +1\\ ~\\ f(0)=\sin 0 -0+ \frac{0^3}{6}=0\\ f'(0)=\cos 0 -1+\frac{0^2}{2}=0\\ f''(0)=-\sin 0 +0=0\\ ~\\ \textrm{Now,}~f'''(x)\geq 0~\textrm{for}~x>0~\textrm{(Since the maximum value of}~\cos x~\textrm{is 1)}\\ ~\\ \textrm{Hence, by the given theorem}\\ f''(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f'(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f(x)\geq 0~\textrm{for}~x>0\\" /></a>
Here's one from my MX1 assessment task last year that hardly anyone got:
<a href="http://www.codecogs.com/eqnedit.php?latex=\\ \textrm{The constant term in each of the binomials} \left(x@plus;\frac{4}{x}\right)^{2n}~\textrm{and}~\left(\frac{x}{a}@plus;\frac{b}{x} \right )^{2n}~\textrm{are equal.}\\ ~\\ \textrm{If}~a@plus;b=-5~\textrm{find the values of}~a~\textrm{and}~b" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ \textrm{The constant term in each of the binomials} \left(x+\frac{4}{x}\right)^{2n}~\textrm{and}~\left(\frac{x}{a}+\frac{b}{x} \right )^{2n}~\textrm{are equal.}\\ ~\\ \textrm{If}~a+b=-5~\textrm{find the values of}~a~\textrm{and}~b" title="\\ \textrm{The constant term in each of the binomials} \left(x+\frac{4}{x}\right)^{2n}~\textrm{and}~\left(\frac{x}{a}+\frac{b}{x} \right )^{2n}~\textrm{are equal.}\\ ~\\ \textrm{If}~a+b=-5~\textrm{find the values of}~a~\textrm{and}~b" /></a>
<a href="http://www.codecogs.com/eqnedit.php?latex=\\ f(x)=\sin x -x@plus; \frac{x^3}{6}\\ f'(x)=\cos x -1@plus;\frac{x^2}{2}\\ f''(x)=-\sin x @plus;x\\ f'''(x)=-\cos x @plus;1\\ ~\\ f(0)=\sin 0 -0@plus; \frac{0^3}{6}=0\\ f'(0)=\cos 0 -1@plus;\frac{0^2}{2}=0\\ f''(0)=-\sin 0 @plus;0=0\\ ~\\ \textrm{Now,}~f'''(x)\geq 0~\textrm{for}~x>0~\textrm{(Since the maximum value of}~\cos x~\textrm{is 1)}\\ ~\\ \textrm{Hence, by the given theorem}\\ f''(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f'(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f(x)\geq 0~\textrm{for}~x>0\\" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ f(x)=\sin x -x+ \frac{x^3}{6}\\ f'(x)=\cos x -1+\frac{x^2}{2}\\ f''(x)=-\sin x +x\\ f'''(x)=-\cos x +1\\ ~\\ f(0)=\sin 0 -0+ \frac{0^3}{6}=0\\ f'(0)=\cos 0 -1+\frac{0^2}{2}=0\\ f''(0)=-\sin 0 +0=0\\ ~\\ \textrm{Now,}~f'''(x)\geq 0~\textrm{for}~x>0~\textrm{(Since the maximum value of}~\cos x~\textrm{is 1)}\\ ~\\ \textrm{Hence, by the given theorem}\\ f''(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f'(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f(x)\geq 0~\textrm{for}~x>0\\" title="\\ f(x)=\sin x -x+ \frac{x^3}{6}\\ f'(x)=\cos x -1+\frac{x^2}{2}\\ f''(x)=-\sin x +x\\ f'''(x)=-\cos x +1\\ ~\\ f(0)=\sin 0 -0+ \frac{0^3}{6}=0\\ f'(0)=\cos 0 -1+\frac{0^2}{2}=0\\ f''(0)=-\sin 0 +0=0\\ ~\\ \textrm{Now,}~f'''(x)\geq 0~\textrm{for}~x>0~\textrm{(Since the maximum value of}~\cos x~\textrm{is 1)}\\ ~\\ \textrm{Hence, by the given theorem}\\ f''(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f'(x)\geq 0~\textrm{for}~x>0\\ \Rightarrow f(x)\geq 0~\textrm{for}~x>0\\" /></a>
Here's one from my MX1 assessment task last year that hardly anyone got:
<a href="http://www.codecogs.com/eqnedit.php?latex=\\ \textrm{The constant term in each of the binomials} \left(x@plus;\frac{4}{x}\right)^{2n}~\textrm{and}~\left(\frac{x}{a}@plus;\frac{b}{x} \right )^{2n}~\textrm{are equal.}\\ ~\\ \textrm{If}~a@plus;b=-5~\textrm{find the values of}~a~\textrm{and}~b" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ \textrm{The constant term in each of the binomials} \left(x+\frac{4}{x}\right)^{2n}~\textrm{and}~\left(\frac{x}{a}+\frac{b}{x} \right )^{2n}~\textrm{are equal.}\\ ~\\ \textrm{If}~a+b=-5~\textrm{find the values of}~a~\textrm{and}~b" title="\\ \textrm{The constant term in each of the binomials} \left(x+\frac{4}{x}\right)^{2n}~\textrm{and}~\left(\frac{x}{a}+\frac{b}{x} \right )^{2n}~\textrm{are equal.}\\ ~\\ \textrm{If}~a+b=-5~\textrm{find the values of}~a~\textrm{and}~b" /></a>
Last edited: