For Sy,
<a href="http://www.codecogs.com/eqnedit.php?latex=\textup{A ~particle~ is~ moving ~so~ that} ~\ddot{x}=18x^3@plus;27x^2@plus;9x.~ \textup{Initially ~x=-2~ and~ velocity, ~v~ is ~-6}.\\\\1. ~\textup{Show ~that~} v^2=9x^2(1@plus;x)^2 \\ 2. ~\textup{Hence, or otherwise, show that }\int \frac{1}{x(1@plus;x)} dx = -3t \\3.~\textup{It ~can~ be ~show ~for ~some ~constant ~c},~ \log_{e}(1@plus;\frac{1}{x}) = 3t@plus;c~,\textup{~Using ~this ~equation ~and ~the ~initial~ conditions, ~find~ x ~as ~a~ function ~of ~t.}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\textup{A ~particle~ is~ moving ~so~ that} ~\ddot{x}=18x^3+27x^2+9x.~ \textup{Initially ~x=-2~ and~ velocity, ~v~ is ~-6}.\\\\1. ~\textup{Show ~that~} v^2=9x^2(1+x)^2 \\ 2. ~\textup{Hence, or otherwise, show that }\int \frac{1}{x(1+x)} dx = -3t \\3.~\textup{It ~can~ be ~show ~for ~some ~constant ~c},~ \log_{e}(1+\frac{1}{x}) = 3t+c~,\textup{~Using ~this ~equation ~and ~the ~initial~ conditions, ~find~ x ~as ~a~ function ~of ~t.}" title="\textup{A ~particle~ is~ moving ~so~ that} ~\ddot{x}=18x^3+27x^2+9x.~ \textup{Initially ~x=-2~ and~ velocity, ~v~ is ~-6}.\\\\1. ~\textup{Show ~that~} v^2=9x^2(1+x)^2 \\ 2. ~\textup{Hence, or otherwise, show that }\int \frac{1}{x(1+x)} dx = -3t \\3.~\textup{It ~can~ be ~show ~for ~some ~constant ~c},~ \log_{e}(1+\frac{1}{x}) = 3t+c~,\textup{~Using ~this ~equation ~and ~the ~initial~ conditions, ~find~ x ~as ~a~ function ~of ~t.}" /></a>