HSC 2012 MX1 Marathon #2 (archive) (2 Viewers)

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,044
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=tan(\theta ) = -4 @plus; 3\sqrt{3}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?tan(\theta ) = -4 + 3\sqrt{3}" title="tan(\theta ) = -4 + 3\sqrt{3}" /></a>

Barb please say yes
That's it. Can't believe everyone struggled on that one so much! LOL
 

barbernator

Active Member
Joined
Sep 13, 2010
Messages
1,439
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=tan(\theta ) = -4 @plus; 3\sqrt{3}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?tan(\theta ) = -4 + 3\sqrt{3}" title="tan(\theta ) = -4 + 3\sqrt{3}" /></a>

Barb please say yes
YES WOOOOOOOOOO!! now you post a question :D :D :D
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=Show ~ \frac{T_{k@plus;1}}{T_{k}} = \frac{n - k @plus; 1}{k} * \frac{x}{a} ~ , ~ for~ (a@plus;x)^n" target="_blank"><img src="http://latex.codecogs.com/gif.latex?Show ~ \frac{T_{k+1}}{T_{k}} = \frac{n - k + 1}{k} * \frac{x}{a} ~ , ~ for~ (a+x)^n" title="Show ~ \frac{T_{k+1}}{T_{k}} = \frac{n - k + 1}{k} * \frac{x}{a} ~ , ~ for~ (a+x)^n" /></a>

Medium/hard
 

barbernator

Active Member
Joined
Sep 13, 2010
Messages
1,439
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=Show ~ \frac{T_{k@plus;1}}{T_{k}} = \frac{n - k @plus; 1}{k} * \frac{x}{a} ~ , ~ for~ (a@plus;x)^n" target="_blank"><img src="http://latex.codecogs.com/gif.latex?Show ~ \frac{T_{k+1}}{T_{k}} = \frac{n - k + 1}{k} * \frac{x}{a} ~ , ~ for~ (a+x)^n" title="Show ~ \frac{T_{k+1}}{T_{k}} = \frac{n - k + 1}{k} * \frac{x}{a} ~ , ~ for~ (a+x)^n" /></a>

Medium/hard
oh god i cbfd latexing for that haha, ill let some other latex leet do that one
 

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,044
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=\\ T_{k@plus;1}=\frac{n!}{k!(n-k)!}\cdot a^k\cdot x^{a-k}\\ T_{k}=\frac{n!}{(k-1)!(n-k@plus;1)!}\cdot a^{k-1}\cdot x^{a-k@plus;1}\\ ~\\ \therefore \frac{T_{k@plus;1}}{T_k}=\frac{n!}{k!(n-k)!}\cdot \frac{(k-1)!(n-k@plus;1)!}{n!}\cdot a^k\cdot a^{1-k} \cdot x^{a-k} \cdot x^{k-a-1}\\ =\frac{n-k@plus;1}{k}\cdot \frac{a}{x}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ T_{k+1}=\frac{n!}{k!(n-k)!}\cdot a^k\cdot x^{a-k}\\ T_{k}=\frac{n!}{(k-1)!(n-k+1)!}\cdot a^{k-1}\cdot x^{a-k+1}\\ ~\\ \therefore \frac{T_{k+1}}{T_k}=\frac{n!}{k!(n-k)!}\cdot \frac{(k-1)!(n-k+1)!}{n!}\cdot a^k\cdot a^{1-k} \cdot x^{a-k} \cdot x^{k-a-1}\\ =\frac{n-k+1}{k}\cdot \frac{a}{x}" title="\\ T_{k+1}=\frac{n!}{k!(n-k)!}\cdot a^k\cdot x^{a-k}\\ T_{k}=\frac{n!}{(k-1)!(n-k+1)!}\cdot a^{k-1}\cdot x^{a-k+1}\\ ~\\ \therefore \frac{T_{k+1}}{T_k}=\frac{n!}{k!(n-k)!}\cdot \frac{(k-1)!(n-k+1)!}{n!}\cdot a^k\cdot a^{1-k} \cdot x^{a-k} \cdot x^{k-a-1}\\ =\frac{n-k+1}{k}\cdot \frac{a}{x}" /></a>


I'm really, really bored.

(Also, wut. captcha? since when?)
 
Joined
Sep 20, 2010
Messages
2,225
Gender
Undisclosed
HSC
2012
Re: HSC 2012 Marathon :)

Is the limit computable by HSC MX1? I had to use LHopitals..
 

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,494
Gender
Undisclosed
HSC
N/A
Re: HSC 2012 Marathon :)

Is the limit computable by HSC MX1? I had to use LHopitals..
You can't use L'Hopital's Principle unless the limit is in the form infinity/infinity.

You would acquire the answer by rationalising the numerator.
 

bleakarcher

Active Member
Joined
Jul 8, 2011
Messages
1,509
Gender
Male
HSC
2013
Re: HSC 2012 Marathon :)

^ multiply numerator and denominator by the conjugate of the numerator.
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=\inline \dpi{150} \lim_{x \rightarrow - 5}~ \frac{\sqrt{20 - x} - 5}{5 @plus; x} ~ * ~ \frac{\sqrt{20 - x} @plus; 5}{\sqrt{20 - x} @plus; 5}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\inline \dpi{150} \lim_{x \rightarrow - 5}~ \frac{\sqrt{20 - x} - 5}{5 + x} ~ * ~ \frac{\sqrt{20 - x} + 5}{\sqrt{20 - x} + 5}" title="\inline \dpi{150} \lim_{x \rightarrow - 5}~ \frac{\sqrt{20 - x} - 5}{5 + x} ~ * ~ \frac{\sqrt{20 - x} + 5}{\sqrt{20 - x} + 5}" /></a>
 
Joined
Sep 20, 2010
Messages
2,225
Gender
Undisclosed
HSC
2012
Re: HSC 2012 Marathon :)

Oh...0/0 doesn't work? Hm ok.
 

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,044
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=\\ ~~~~\lim_{x \rightarrow -5} \frac{\sqrt{20-x}-5}{5@plus;x}\\ =\lim_{x \rightarrow -5} \frac{20-x-25}{(5@plus;x)(\sqrt{20-x}@plus;5)}\\ =\lim_{x \rightarrow -5} \frac{-(x@plus;5)}{(5@plus;x)\sqrt{20-x}@plus;5}\\ =\lim_{x \rightarrow -5} \frac{-1}{\sqrt{20-x}@plus;5}\\ =-\frac{1}{10}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ ~~~~\lim_{x \rightarrow -5} \frac{\sqrt{20-x}-5}{5+x}\\ =\lim_{x \rightarrow -5} \frac{20-x-25}{(5+x)(\sqrt{20-x}+5)}\\ =\lim_{x \rightarrow -5} \frac{-(x+5)}{(5+x)\sqrt{20-x}+5}\\ =\lim_{x \rightarrow -5} \frac{-1}{\sqrt{20-x}+5}\\ =-\frac{1}{10}" title="\\ ~~~~\lim_{x \rightarrow -5} \frac{\sqrt{20-x}-5}{5+x}\\ =\lim_{x \rightarrow -5} \frac{20-x-25}{(5+x)(\sqrt{20-x}+5)}\\ =\lim_{x \rightarrow -5} \frac{-(x+5)}{(5+x)\sqrt{20-x}+5}\\ =\lim_{x \rightarrow -5} \frac{-1}{\sqrt{20-x}+5}\\ =-\frac{1}{10}" /></a>

Sometimes it does ie:

I thought L'Hopitals applied to all indeterminate limits... so it should work for all limits of the form 0/0, not just sometimes. (I may be wrong, you're the one studying second year advanced maths after all)
 
Last edited:

barbernator

Active Member
Joined
Sep 13, 2010
Messages
1,439
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=\\ ~~~~\lim_{x \rightarrow -5} \frac{\sqrt{20-x}-5}{5@plus;x}\\ =\lim_{x \rightarrow -5} \frac{20-x-25}{(5@plus;x)(\sqrt{20-x}@plus;5)}\\ =\lim_{x \rightarrow -5} \frac{-(x@plus;5)}{(5@plus;x)\sqrt{20-x}@plus;5}\\ =\lim_{x \rightarrow -5} \frac{-1}{\sqrt{20-x}@plus;5}\\ =-\frac{1}{10}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ ~~~~\lim_{x \rightarrow -5} \frac{\sqrt{20-x}-5}{5+x}\\ =\lim_{x \rightarrow -5} \frac{20-x-25}{(5+x)(\sqrt{20-x}+5)}\\ =\lim_{x \rightarrow -5} \frac{-(x+5)}{(5+x)\sqrt{20-x}+5}\\ =\lim_{x \rightarrow -5} \frac{-1}{\sqrt{20-x}+5}\\ =-\frac{1}{10}" title="\\ ~~~~\lim_{x \rightarrow -5} \frac{\sqrt{20-x}-5}{5+x}\\ =\lim_{x \rightarrow -5} \frac{20-x-25}{(5+x)(\sqrt{20-x}+5)}\\ =\lim_{x \rightarrow -5} \frac{-(x+5)}{(5+x)\sqrt{20-x}+5}\\ =\lim_{x \rightarrow -5} \frac{-1}{\sqrt{20-x}+5}\\ =-\frac{1}{10}" /></a>
well done, now post a new question
 

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,044
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=\\ $By rationalising the numerator, prove that$ \sqrt{n@plus;1} -\sqrt{n} > \frac{1}{2\sqrt{n@plus;1}}. $\\ ~\\ Hence prove by induction that$ 1@plus;\frac{1}{2}@plus;\frac{1}{3}...\frac{1}{n} < \sqrt{n} $ for $n\geq 7" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ $By rationalising the numerator, prove that$ \sqrt{n+1} -\sqrt{n} > \frac{1}{2\sqrt{n+1}}. $\\ ~\\ Hence prove by induction that$ 1+\frac{1}{2}+\frac{1}{3}...\frac{1}{n} < \sqrt{n} $ for $n\geq 7" title="\\ $By rationalising the numerator, prove that$ \sqrt{n+1} -\sqrt{n} > \frac{1}{2\sqrt{n+1}}. $\\ ~\\ Hence prove by induction that$ 1+\frac{1}{2}+\frac{1}{3}...\frac{1}{n} < \sqrt{n} $ for $n\geq 7" /></a>
 
Last edited:

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,494
Gender
Undisclosed
HSC
N/A
Re: HSC 2012 Marathon :)

I thought L'Hopitals applied to all indeterminate limits... so it should work for all limits of the form 0/0, not just sometimes. (I may be wrong, you're the one studying second year advanced maths after all)
I thought the exact same thing too and asked my lecturer after we first learnt it (couple weeks into 1st Year).

My motive for asking is because sometimes we can use limit transformations:



To turn say x -> infinity to x -> 0 and change the form of the functions f(x) and g(x), so it may be possible to turn a 0/0 to a infinity/infinity form.

He told me that there are some families of curves where using L'Hopital's Principle for 0/0 doesn't work.

Naturally I asked him "Okay.. can you give me an example?", to which he replied something along the lines of "But you don't know enough Maths to understand the example, so just keep it in mind.".

I later emailed him for an example anyway so maybe some day when I 'know enough Maths', I would be able to understand (of course I didn't actually say that in the email) and to this day, I am still waiting for a reply.
 

Sanjeet

Member
Joined
Apr 20, 2011
Messages
239
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

Naturally I asked him "Okay.. can you give me an example?", to which he replied something along the lines of "But you don't know enough Maths to understand the example, so just keep it in mind.".

I later emailed him for an example anyway so maybe some day when I 'know enough Maths', I would be able to understand (of course I didn't actually say that in the email) and to this day, I am still waiting for a reply.
lol'd
 

Sy123

This too shall pass
Joined
Nov 6, 2011
Messages
3,730
Gender
Male
HSC
2013
Re: HSC 2012 Marathon :)

<a href="http://www.codecogs.com/eqnedit.php?latex=\\ $By rationalising the numerator, prove that$ \sqrt{n@plus;1} -\sqrt{n} > \frac{1}{2\sqrt{n@plus;1}}. $\\ ~\\ Hence prove by induction that$ 1@plus;\frac{1}{2}@plus;\frac{1}{3}...\frac{1}{n} < \sqrt{n} $ for $n\geq 7" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ $By rationalising the numerator, prove that$ \sqrt{n+1} -\sqrt{n} > \frac{1}{2\sqrt{n+1}}. $\\ ~\\ Hence prove by induction that$ 1+\frac{1}{2}+\frac{1}{3}...\frac{1}{n} < \sqrt{n} $ for $n\geq 7" title="\\ $By rationalising the numerator, prove that$ \sqrt{n+1} -\sqrt{n} > \frac{1}{2\sqrt{n+1}}. $\\ ~\\ Hence prove by induction that$ 1+\frac{1}{2}+\frac{1}{3}...\frac{1}{n} < \sqrt{n} $ for $n\geq 7" /></a>
Here goes first use of latex,



Ok here goes second part:







Therefore, the statement is true for n=7, If the statement is true for n=k, then it is also true for n=k+1. Therefore the statement is true for all integers, n greater than or equal to 7

There may be a few working lines missing, but that was my first real attempt at using latex, and it worked out alright. For some reason my reasoning for the induction was missing, but I filled it in, under normal text above.

Ok Here is my question.

(Fitzpatrick 3U Ex23(c) Question 36)



It is in the induction excercise, so you will have to use induction

How do you deatach items?
 

Attachments

Last edited:

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

Difficulty: Easy

<a href="http://www.codecogs.com/eqnedit.php?latex=\frac{1}{\left | x \right |} < 5" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\frac{1}{\left | x \right |} < 5" title="\frac{1}{\left | x \right |} < 5" /></a>
 

Users Who Are Viewing This Thread (Users: 0, Guests: 2)

Top