<a href="http://www.codecogs.com/eqnedit.php?latex=\frac{10}{(x-1)(x^{2}+9)}\\ = \frac{a}{x-1}@plus;\frac{bx@plus;c}{x^2@plus;9}\\ =\frac{a(x^2@plus;9)@plus;(bx@plus;c)(x-1)}{(x-1)(x^2-9)}\\ taking, numerator, and, expanding, and, factorising\\ =(a@plus;b)x^2@plus;(c-b)x@plus;(9a-c)= 10\\ we now have 3 equations\\ a@plus;b=0 (1)\\ c-b@plus;0 (2)\\ 9a-c=10(3)\\ solving them simultaneously we get a=1,b=-1,c=-1\\ we now have our partial fractions\\ \frac{1}{x-1}-\frac{x}{x^2@plus;9}-\frac{1}{x^2@plus;9}\\ integrating\\ \int \frac{1}{x-1}-\int \frac{x}{x^2@plus;9}-\int \frac{1}{x^2@plus;9} \\ = ln(x-1)-\frac{1}{2}ln(x^2@plus;9)-\frac{1}{3}tan^-1(\frac{x}{3})" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\frac{10}{(x-1)(x^{2}-9)}\\ = \frac{a}{x-1}+\frac{bx+c}{x^2+9}\\ =\frac{a(x^2+9)+(bx+c)(x-1)}{(x-1)(x^2-9)}\\ taking numerator and expanding and factorising\\ =(a+b)x^2+(c-b)x+(9a-c)= 10\\ we now have 3 equations\\ a+b=0 (1)\\ c-b+0 (2)\\ 9a-c=10(3)\\ solving them simultaneously we get a=1,b=-1,c=-1\\ we now have our partial fractions\\ \frac{1}{x-1}-\frac{x}{x^2+9}-\frac{1}{x^2+9}\\ integrating\\ \int \frac{1}{x-1}-\int \frac{x}{x^2+9}-\int \frac{1}{x^2+9} \\ = ln(x-1)-\frac{1}{2}ln(x^2+9)-\frac{1}{3}tan^-1(\frac{x}{3})" title="\frac{10}{(x-1)(x^{2}-9)}\\ = \frac{a}{x-1}+\frac{bx+c}{x^2+9}\\ =\frac{a(x^2+9)+(bx+c)(x-1)}{(x-1)(x^2-9)}\\ taking numerator and expanding and factorising\\ =(a+b)x^2+(c-b)x+(9a-c)= 10\\ we now have 3 equations\\ a+b=0 (1)\\ c-b+0 (2)\\ 9a-c=10(3)\\ solving them simultaneously we get a=1,b=-1,c=-1\\ we now have our partial fractions\\ \frac{1}{x-1}-\frac{x}{x^2+9}-\frac{1}{x^2+9}\\ integrating\\ \int \frac{1}{x-1}-\int \frac{x}{x^2+9}-\int \frac{1}{x^2+9} \\ = ln(x-1)-\frac{1}{2}ln(x^2+9)-\frac{1}{3}tan^-1(\frac{x}{3})"+C /></a>
+C
if that is wrong, someone please tell. Also, i have no idea how to do spaces in latex