4 Unit Revising Marathon HSC '10 (2 Viewers)

jet

Banned
Joined
Jan 4, 2007
Messages
3,148
Gender
Male
HSC
2009
(1-2sin^2a)+(1-2sin^2b)+(1-2sin^2c)=0

sin^2(a)+sin^2(b)+sin^2(c)=3/2 (1)

(1-cos^2a)+(1-cos^2b)+(1-cos^2c)=3/2

3-3/2=cos^2a+cos^2b+cos^2c (2)

Therefore (1)=(2) [sin^2a+sin^2b+sin^2c=cos^2a+cos^b+cos^c=3/2]

(cos^2a-sin^2a)+(cos^2b-sin^2b)+(cos^2c-sin^2c)=0

cos2a+cos2b+cos2c=0

Pretty noob solution, i'll think about the complex way now

Question: tan(A/2).tan(B/2)+tan(A/2).tan(C/2)+tan(B/2).tan(C/2)=1
There is a slight problem in that you assume the result in your first line.

I.e. you assume that cos(2a) + cos(2b) + cos(2c) = 0, when that is the result you want to actually prove in the first place.
 

The Nomad

Member
Joined
Oct 11, 2009
Messages
123
Gender
Male
HSC
2010
another alternative to a) is considering a polynomial, p(x) with roots such that

p(x)=x^3-(a+b+c)x^2+(ab+ac+bc)x-abc=0

Then because a, b and c are roots, they should satisfy p(x).

a^3-a^2(a+b+c)+a(ab+ac+bc)-abc=0
b^3-b^2(a+b+c)+b(ab+ac+bc)-abc=0
c^3-c^2(a+b+c)+c(ab+ac+bc)-abc=0

Then adding these three, would enable you to factorise it quite easily

There is also another approach for factorising this using determinants but because that confuses four unit students as it is not in the course, I will not mention it. Those interested in the determinant approach can email me.

Next Question,
--------------------

let a, b and c be real numbers such that

cos a+cos b+cos c=sin a+sin b+sin c=0

Prove that

cos 2a+cos 2b+cos 2c=sin 2a+sin 2b+sin 2c=0

(hint: You may use complex numbers to prove the result)


That is one sick question.
 

study-freak

Bored of
Joined
Feb 8, 2008
Messages
1,128
Gender
Male
HSC
2009

lols, beaten although vafa, you made one stupid mistake of subbing in an incorrect value for y!
 
Last edited:

Trebla

Administrator
Administrator
Joined
Feb 16, 2005
Messages
8,382
Gender
Male
HSC
2006

lols, beaten although vafa, you made one stupid mistake of subbing in an incorrect value for y!
Just to let people here know, the technique employed in finding the derivative as shown above is known as logarithmic differentiation which involves taking the natural logarithm of both sides and implicitly differentiating. This technique can actually make some normally complicated functions much simpler to differentiate because the log laws can be used to separate out composite parts of a function...may be potentially useful in exam questions (though quite rare lol)?
 

cutemouse

Account Closed
Joined
Apr 23, 2007
Messages
2,232
Gender
Undisclosed
HSC
N/A
Just to let people here know, the technique employed in finding the derivative as shown above is known as logarithmic differentiation which involves taking the natural logarithm of both sides and implicitly differentiating. This technique can actually make some normally complicated functions much simpler to differentiate...may be potentially useful in exam questions (though quite rare lol)?
Yeah I thought of that as well. Esp, in curve sketching which require multiple applications of the product rule (eg. to find y'' when y is a 'complicated' function)

But I figured that it would be too much "mucking around" at 2U/3U level. But in 4U you never know ;)
 

The Nomad

Member
Joined
Oct 11, 2009
Messages
123
Gender
Male
HSC
2010
My brain can not understand how x=y=z=0, could you please clarify this for me?
Cos a = 0 and Sin a = 0, so x = Cos a + i Sin a = 0 + 0i = 0. Same goes for y and z.

And your solution is so long :p
 

jet

Banned
Joined
Jan 4, 2007
Messages
3,148
Gender
Male
HSC
2009
Cos a = 0 and Sin a = 0, so x = Cos a + i Sin a = 0 + 0i = 0. Same goes for y and z.

And your solution is so long :p
I'm not quite sure whether that is correct. I think there may be a few different cases.
 

The Nomad

Member
Joined
Oct 11, 2009
Messages
123
Gender
Male
HSC
2010
Next Question,
--------------------
(reserved for my attempted solution)

Question: tan(A/2).tan(B/2)+tan(A/2).tan(C/2)+tan(B/2).tan(C/2)=1


That was so annoying to type. And what do you mean Jetblack?
 

The Nomad

Member
Joined
Oct 11, 2009
Messages
123
Gender
Male
HSC
2010
Can you provide a mathematical proof for this statement? We all wish, it could be that easy, but it is not. your hypothesis is cosa+cosb+cos c=sin a+sin b+sin c=0, but your point is just one of the cases, it could be the case that cosa, cosb and cos c and sin a, sin b and sin c, all add up to zero. Right? and in that case, neither of the terms could be zero but their addition would be zero.
Oh deary me...I completely misread the question. My mistake, I know what you mean now.
 

shaon0

...
Joined
Mar 26, 2008
Messages
2,023
Location
Guess
Gender
Male
HSC
2009


That was so annoying to type. And what do you mean Jetblack?
I got it out like this, but i'm wondering whether a polynomial proof is possible. The polynomial is degree 3 with roots tan(A/2), tan(B/2), tan(C/2) and sum of roots=product of roots.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 2)

Top