HSC 2012 MX2 Marathon (archive) (4 Viewers)

seanieg89

Well-Known Member
Joined
Aug 8, 2006
Messages
2,653
Gender
Male
HSC
2007
Re: 2012 HSC MX2 Marathon

 
Last edited:

seanieg89

Well-Known Member
Joined
Aug 8, 2006
Messages
2,653
Gender
Male
HSC
2007
Re: 2012 HSC MX2 Marathon

I don't want to make a thread about this as i could just ask it here. How can a complex function that converges for Re(z)>s where s is a real number have a zero for Re(z)<s. I don't understand the logic and was wondering if the initial statement of convergence must be wrong as a imaginary part of high enough value might change the nature of the limit to infinity. I basically stumbled across this while reading about Reimanns zeta function which converges for Re(S)>1 but has zeroes at Re(s)=1/2 which seems like a contradiction.
Okay, I see what you are asking. This is a common misconception. The Riemann Zeta function is defined by the series:



ONLY for s with real part larger than one. It turns out there is only one "nice" function that is defined on the whole complex plane (excluding s=1) that agrees with this infinite series wherever the latter converges. THIS is the function that is conjectured to have all nontrivial zeros on the line Re(s)=1/2.
 

lolcakes52

Member
Joined
Oct 31, 2011
Messages
283
Gender
Undisclosed
HSC
2012
Re: 2012 HSC MX2 Marathon

So what your saying is that it only definitely converges for Re(s)>1 but can converge for values less than or equal to one depending on the imaginary part? In this case it can converge but only for specific values of Im(s)<1 ?
 

seanieg89

Well-Known Member
Joined
Aug 8, 2006
Messages
2,653
Gender
Male
HSC
2007
Re: 2012 HSC MX2 Marathon

No, the series I wrote down converges if and ONLY if Re(s)>1. It diverges everywhere else. However, this fragment of a function can be extended to the whole complex plane in a very natural way. (Excluding the point s=1). This process is called analytic continuation and is a recurring theme in complex analysis.
 

cutemouse

Account Closed
Joined
Apr 23, 2007
Messages
2,232
Gender
Undisclosed
HSC
N/A
Re: 2012 HSC MX2 Marathon

This process is called analytic continuation and is a recurring theme in complex analysis.
Prove analytic continuation.

It actually is a VERY difficult theorem to prove.
 

AAEldar

Premium Member
Joined
Apr 5, 2010
Messages
2,242
Gender
Male
HSC
2011
Re: 2012 HSC MX2 Marathon

Come on guys, keep this stuff within the realms of MX2.
 

seanieg89

Well-Known Member
Joined
Aug 8, 2006
Messages
2,653
Gender
Male
HSC
2007
Re: 2012 HSC MX2 Marathon

Prove analytic continuation.

It actually is a VERY difficult theorem to prove.
Which theorem are you referring to? The Monodromy theorem? It isn't too difficult to find the analytic continuation of the zeta function in particular...
 

deswa1

Well-Known Member
Joined
Jul 12, 2011
Messages
2,251
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

Going off Carrot's question, this is to prove the first result (from Cambridge):

<img src="http://latex.codecogs.com/gif.latex?\textup{Consider the area under }y=\frac{1}{x}\textup{ between x=n and x=n+1}\\ a) \textup{ Show that }\frac{1}{n+1}< \int_{n}^{n+1}\frac{1}{x}dx< \frac{1}{n}\\ b)\textup{ Hence show that }\frac{n}{n+1}< ln(1+\frac{1}{n})^n< 1\\ c)\textup{ Take the limit of this last result as n tends to infinity to}\\ \textup{show that }\lim_{n \to \infty }(1+\frac{1}{n})^n=e" title="\textup{Consider the area under }y=\frac{1}{x}\textup{ between x=n and x=n+1}\\ a) \textup{ Show that }\frac{1}{n+1}< \int_{n}^{n+1}\frac{1}{x}dx< \frac{1}{n}\\ b)\textup{ Hence show that }\frac{n}{n+1}< ln(1+\frac{1}{n})^n< 1\\ c)\textup{ Take the limit of this last result as n tends to infinity to}\\ \textup{show that }\lim_{n \to \infty }(1+\frac{1}{n})^n=e" />
 

seanieg89

Well-Known Member
Joined
Aug 8, 2006
Messages
2,653
Gender
Male
HSC
2007
Re: 2012 HSC MX2 Marathon

Given that:



Show that:

Don't know what you are expecting us to assume, as arbitrary real powers are not defined in the HSC. But we can make sense of the question using the integral definition of the logarithm, and the log laws/differentiation laws that follow.

 
Last edited:

Cyberbully

Where do you live?
Joined
Oct 29, 2011
Messages
122
Gender
Undisclosed
HSC
2012
Re: 2012 HSC MX2 Marathon

How would you approach this algebraically (or any general explanation for that matter):

<img src="http://latex.codecogs.com/gif.latex?\textup{find the locus of } arg(z(z-(\sqrt{3} + i))) = \frac{\pi}{6}" title="\textup{find the locus of } arg(z(z-(\sqrt{3} + i))) = \frac{\pi}{6}" />
 
Last edited:

deswa1

Well-Known Member
Joined
Jul 12, 2011
Messages
2,251
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

Do it geometrically:
<img src="http://latex.codecogs.com/gif.latex?arg(z(z-(\sqrt{3}+i))=\frac{\pi}{6}\\ argz+arg(z-(\sqrt{3}+i))=\frac{\pi}{6}" title="arg(z(z-(\sqrt{3}+i))=\frac{\pi}{6}\\ argz+arg(z-(\sqrt{3}+i))=\frac{\pi}{6}" />

Try going from here. Tell us how you go (I haven't tried the question yet so I don't know the answer.
 

deswa1

Well-Known Member
Joined
Jul 12, 2011
Messages
2,251
Gender
Male
HSC
2012
Re: 2012 HSC MX2 Marathon

Yes, I finally beat Carrotsticks to something :).
 

Cyberbully

Where do you live?
Joined
Oct 29, 2011
Messages
122
Gender
Undisclosed
HSC
2012
Re: 2012 HSC MX2 Marathon

Do it geometrically:
<img src="http://latex.codecogs.com/gif.latex?arg(z(z-(\sqrt{3}+i))=\frac{\pi}{6}\\ argz+arg(z-(\sqrt{3}+i))=\frac{\pi}{6}" title="arg(z(z-(\sqrt{3}+i))=\frac{\pi}{6}\\ argz+arg(z-(\sqrt{3}+i))=\frac{\pi}{6}" />

Try going from here. Tell us how you go (I haven't tried the question yet so I don't know the answer.
tried that.

didn't get very far.

the "answer" is a straight line through origin and (sqrt(3) + i), excluding the point (sqrt(3) + i) on an argand diagram if it helps...
 

math man

Member
Joined
Sep 19, 2009
Messages
499
Location
Sydney
Gender
Male
HSC
N/A
Re: 2012 HSC MX2 Marathon

New question: Prove by induction that every natural number greater than 2 has a prime divisor.
 

Inference

New Member
Joined
May 1, 2012
Messages
5
Gender
Undisclosed
HSC
N/A
Re: 2012 HSC MX2 Marathon

New question: Prove by induction that every natural number greater than 2 has a prime divisor.
There is a stronger result, that every natural number greater than 1 has a prime divisor. Anyhow, several methods, first as per the question states:

Assume a set where , then n > 1 and n has a prime divisor. Now to show that k exists in Q is quite straightforward with the following partition:

If k has no other factors than k or 1, then k is trivially in Q.

If k is nonprime, then k will have a factor w such that , thus by the inductive hypothesis.

hence

Next method is to show a even stronger result, in other words, the fundmental theorem of arithmetic.

Assume that there are numbers which can not be expressed as a product of primes. Let the smallest possible number of this kind be .

can not be since is neither composite nor prime. can not be prime since the PPF of a prime number is just itself. Thus must be a composite number.

Let the composition of where

Since was the smallest number that can not be expressed as a product of primes, this means and can be expressed as a product of primes and consequently we get where and can be both expressed as primes. Contradiction!

Thus can also be expressed as a product of primes.

Lemma 1: If is a prime and then for some .

Lemma 2: If and are primes and is a natural number and then .

Let's assume that for some number that there are (at least) ways of expressing its PPF.



Clearly for all ,



By Lemma 1 for any .

By Lemma 2

This means that for all and all there are values of which equals to those of . For example, could equal to , or etc. This also means we have created a bijection between and such that .

Therefore if the number has PPF's then the prime number 'base' will be exactly the same, the only different would be in the powers, namely and .

Now since each has a corespondent equivalent we can rewrite as:





however can not be divided by unless for some such that

But since we have a contradiction.
 

lolcakes52

Member
Joined
Oct 31, 2011
Messages
283
Gender
Undisclosed
HSC
2012
Re: 2012 HSC MX2 Marathon

Question 1: ß and ∂ are complex roots of the equation x^3 + 5x + 1=0. Show that the other root is -1/|ß|^2
Question 2: Show that ß∂ is a root of the equation x^3 -5x^2 -1=0.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 4)

Top