RealiseNothing
what is that?It is Cowpea
Re: HSC 2014 4U Marathon
![](https://latex.codecogs.com/png.latex?\bg_white S(x) = \frac{x}{1+x} + \frac{2x^2}{1+x^2} + \frac{4x^4}{1+x^4} + ...)
![](https://latex.codecogs.com/png.latex?\bg_white \frac{S(x)}{x} = \frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x ^4} + ...)
Now we have on the RHS, the numerator is the derivative of the denominator, so we shall integrate both sides:
![](https://latex.codecogs.com/png.latex?\bg_white \int \frac{S(x)}{x} \dx = \ln(1+x) + \ln(1+x^2) + \ln(1+ x^4) + ...)
![](https://latex.codecogs.com/png.latex?\bg_white =\ln((1+x)(1+x^2)(1+x^4)...))
![](https://latex.codecogs.com/png.latex?\bg_white =\ln(1+x+x^2+x^3+x^4+...))
![](https://latex.codecogs.com/png.latex?\bg_white =\ln(\frac{1}{1-x}))
![](https://latex.codecogs.com/png.latex?\bg_white =-\ln(1-x))
So we have:
![](https://latex.codecogs.com/png.latex?\bg_white \int \frac{S(x)}{x} = -\ln(1-x))
Differentiating both sides:
![](https://latex.codecogs.com/png.latex?\bg_white \frac{S(x)}{x} = \frac{1}{1-x})
![](https://latex.codecogs.com/png.latex?\bg_white S(x) = \frac{x}{1-x})
Ok if you got it too I'm assuming it's right:
Now we have on the RHS, the numerator is the derivative of the denominator, so we shall integrate both sides:
So we have:
Differentiating both sides: